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Introduction 

Radiation therapy is an important modality in the treatment of localized advanced prostate cancer. 
However, a subset of these patients will not be cured, and long-term follow-up shows half of 
them will suffer relapse. In conventional radiotherapy, physicians use CT images to identify the 
prostate, plan treatment, and deliver the radiation to cure the patient. A limitation of CT imaging 
is its inability to identify cancerous regions within the prostate gland; therefore the whole prostate 
is irradiated with a tumoricidal dose.  

 Recent studies have shown that ultrasound tissue-typing (UTT) and multiparametric MR 
imaging can identify cancer or aggressive cancer inside the prostate. Each modality has shown 
encouraging potential for improved imaging of prostate cancer when used alone; combining 
parameters derived from each modality may provide superior sensitivity and specificity for 
prostate cancer. To achieve such combination, image registration of the prostate gland of the UTT 
and MR images is the most critical step. 

 The proposed project is to combine UTT and MR imaging to develop an image-guided 
tumor-targeted radiation therapy, in which higher radiation dose will be delivered to the 
aggressive tumors to improve long-term survival. We propose a novel registration technology of 
UTT and multiparametric MR images based on a patient-specific biomechanical model. We will 
test our registration technique to a set of 20 patients’ ultrasound and MR images. Through 
registration between ultrasound and MRI, the generated 3D cancer mapping shows the location, 
volume and aggressiveness of the tumor foci. Success in this research program will offer 
radiation oncologists a new approach that delivers higher doses to tumor-bearing regions to 
improve local control and survival while maintaining or reducing doses to surrounding normal 
tissues, such as the rectum and bladder.  

Keywords 

Prostate cancer, image-guided intervention, image registration, MRI, ultrasound tissue-typing 
(UTT), radiotherapy. 

Overall Project Summary 

During this funding period, I have accomplished the training and research plan proposed for year 
1. My career development was comprised of mentored research, advanced coursework, seminars
and conferences. I was fortunate to work under the guidance of an outstanding mentor team at 
Emory Winship Cancer Institute. I took three courses (Medical Health Physics, Radiation 
Dosimetry and Radiation Therapy Physics) between September 2013 and May 2014, and go 
straight “A”s. I attended weekly chart rounds and monthly journal club at the Department of 
Radiation Oncology. I attended monthly research seminars and prostate tumor boards at the 
Winship Cancer Institute. I also attended seminars on manuscript and grant writing organized by 
Emory Postdoctoral Education Office. I attended five international conferences, and gave 7 oral 
and 9 poster presentations during this funding period. 

As for the proposed research, my specialized role is to develop image registration techniques. 
I participated in most, if not all, research aspects of image-guided prostate cancer radiation 
therapy through combination of UTT images with multiparametric MR (Yang et al., 2013c; Yang 
et al., 2013a; Lin et al., 2013b; Lin et al., 2013a; Wang et al., 2013; Yang et al., 2014c, b; Yang 
et al., 2014d; Yang et al., 2014g; Yang et al., 2014a; Yang et al., 2014e; Yang and Liu, 2014; 
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Yang et al., 2015c; Yang et al., 2015a; Yang et al., 2015b). The following paragraphs outline the 
training and research associated with the tasks described in the Statement of Work.  

 As for the Task 1 in Aim 1 of 3D prostate segmentation, we have developed and refined a 
prostate segmentation method (Yang et al., 2011; Yang et al., 2012; Yang et al., 2014d; Yang et 
al., 2014e; Yang et al., 2015c, b) based on the patch-based anatomical features, as shown in 
Fig.1. Patient-specific anatomical features are extracted from the aligned training images and 
adopted as signatures for each voxel. The more robust and informative features are identified by 
the feature selection process to train the machine learning classifier (MLC). The well-trained 
MLC was used to localize the prostate of the patient. Many studies have shown that transrectal 
ultrasound (TRUS) prostate images provide accurate prostate volumes as compared with 
pathological specimens; hence we proposed to utilize these TRUS images to create prostate 
contours for radiation therapy treatment planning. We first used our previously developed TRUS 
segmentation method to segment the prostate from the ultrasound (US) images, and then we used 
the deformable registration based on catheter locations to deform the segmented prostate volume 
on the ultrasound images to planning CT images to improve the prostate delineation in 
radiotherapy. Our prostate segmentation research on improving the accuracy of prostate volume 
delineation in radiation therapy received the Science Council Research Award at the 55th annual 
meeting of American Association of Physicists in Medicine (AAPM), Indianapolis, IN, in 
October, 2013. 

TRUS Images {USi} Segmented Prostates {Pi}

Training Set

Post-processing

New Patient TRUS

PreprocessingPreprocessing

Perform and Optimize 
alignments

Register the training TRUS 
{USi} to the new TRUS

Extract patched-based 
anatomical features {Fi}

Selected features {Fj} Aligned prostate {Pi}

Train kernel SVMWell-trained kernel SVM

Features selection

Apply the corresponding 
transformation to 
the prostates {Pi}

Final Segmentation

Extract selected  
anatomical features

Figure 1. Schematic flow chart of the 3D US prostate segmentation. 
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 As for the Task 2 in Aim 1 of prostate image registration, we have developed a novel 
registration method for ultrasound (US) and MR prostate images (Yang et al., 2014a; Yang et al., 
2014c, b; Yang et al., 2014g; Yang et al., 2015a). We introduced a new MR-US registration 
method that combined a subject-specific biomechanical model with the B-spine-based 
transformation, as shown in Fig.2. In particular, we exploited the US elastography concept, in 
which a detailed 3D elasticity map of the prostate was generated for each patient. The B-spline 
transformation was calculated by minimizing the Euclidean distance between the normalized 
attribute vectors of surface landmarks of MR and TRUS prostate surfaces. The biomechanical 
mode was subsequently used to constrain the B-spline-based deformation to achieve an accurate 
internal volumetric deformation. Our biomechanical model took into account the wide variations 
among patients and within each prostate gland – normal prostatic tissue, cysts, cancers and 
calcifications all have different elastic properties. We are the first group to utilize the ultrasound 
elastography to generate a subject-specific biomechanical model to improve the volumetric 
deformation in MR-US prostate registration. Because of our registration work on the ultrasound-
guided prostate radiotherapy I was honored with the Young Scientist Award by the SPIE Medical 
Imaging, San Diego, CA, in February, 2014. 

3D TRUS 1

Patient

Estimate the strain image

3D TRUS 2MRI

Calculate the 3D tissue strain vector map with 
biomechanical material properties

Segment TRUS prostateSegment MR prostate

Calculate B-spline-based transformation 
through surface match

Combine 3D strain map with surface-based transformation

Warp the MRI to match the TRUS using the combined transformation

Figure 2. Schematic flow chart of the MR-TRUS prostate registration. 

 As for the Task 3 and 4 in Aim 2 of acquiring the US and MR scans of a prostate phantom 
and evaluating the accuracy of our registration method with this phantom, we conducted a 
prostate-mimicking phantom study. Three to five medal seeds were implanted inside the prostate 
phantom as land markers. A series of 3D ultrasound scans were obtained under the various 
pressure applied by the ultrasound probe. One MRI scan was obtained without prostate 
deformation. All phantom data have been analyzed and mean target registration error (TRE) was 
1.29 mm. The achieved TRE less than 2 mm meets our defined error and shows the success of our 
registration method.  

 As for the Task 5 in the Aim 3, we have obtained the IRB approval for the study “Prostate 
Cancer Radiotherapy” and are working on evaluating the performance of our registration 
technique (Task 6 and 7 in Aim 3) using 20 patients’ UTT and MR images. To date, we have 
enrolled 7 patients in our study. So, we have a bit ahead of the proposed research schedule and we 
anticipate a successful completion of the proposed research in year 2.  
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Key Research Accomplishments 
 

1. We have developed prostate segmentation method for prostate radiation therapy (Yang et al., 
2013a; Yang et al., 2013c; Yang et al., 2014d; Yang et al., 2014e; Yang et al., 2015b). It is 
significant because it improves prostate contours utilizing intra-operative US-based prostate 
volume in prostate treatment planning. This technique could improve prostate delineation, 
and enable accurate dose planning and delivery.  

2. We have developed MR-US image registration method (Yang and Liu, 2014; Yang et al., 
2014a; Yang et al., 2014b; Yang et al., 2014e; Yang et al., 2014g; Yang et al., 2015c; Yang 
et al., 2015a) that could be used for the tumor-guided prostate radiotherapy. It is important 
because it could help radiation oncologists better locate and target tumors regions for prostate 
treatment planning and, potentially, improve prostate-cancer treatment outcome.  

3. We have developed image visualization software for prostate image segmentation, 
registration and analysis (Yang et al., 2013a; Yang and Liu, 2014; Yang et al., 2014d; Yang 
et al., 2014e). This byproduct is a very useful image analysis tool with multiple visualization 
displays. It also allows physicians to quantitatively measure prostate and tumor size, prostate 
movement and deformation. 

4. We have refined MR prostate imaging techniques using multiparametric T2, DCE and DWI 
images. Since the imaging techniques well delineate the prostate and the potential tumor 
region, they could possibly be used for the prostate cancer screening and other clinical 
applications such as image-guided prostate radiotherapy (Yang et al., 2014b; Yang et al., 
2014g; Yang et al., 2014k).   

5. We have developed ultrasound imaging techniques for the acquisition of B-mode and RF 
prostate images. Since the B-mode images well delineate the prostate and UTT images 
provide the potential tumor region (Liu et al., 2007; Liu et al., 2009). They also could 
possibly be used for the prostate cancer screening and other clinical applications (Yang et al., 
2013b; Yang et al., 2014i; Yang et al., 2014j). 

6. We have designed fast imaging techniques for interventional transrectal ultrasound (TRUS) 
imaging of the prostate (Yang et al., 2014c; Yang et al., 2014e). This is very important 
because the technique can acquire prostate images in real-time and thus potentially provide 
image guidance during interventional procedure.  

7. We have performed image registration and fusion experiments using retrospective ultrasound 
and MR images from patients with prostate cancer (Yang et al., 2014c; Yang et al., 2015a). 
Registration and fusion of the two modalities could improve the diagnosis of prostate tumors, 
the accuracy of dose delivery and potentially enhance prostate cancer radiotherapy treatment 
outcome. 

8. We have conducted a variety of pelvic phantom experiments to test registration accuracy of 
MR and US image (Yang et al., 2013c; Yang et al., 2014c; Yang et al., 2015a). These 
experiments provided some baseline for accuracy evaluation and simulation. 

9. We have tested the registration accuracy and clinical feasibility (Yang et al., 2014c, b; Yang 
et al., 2014g; Yang et al., 2015a) with in vivo patient data. We planned to use more patients’ 
data to test our registration method. These experiments will test a variety of possible 
conditions in potential application and thus provide useful information and guidance for 
future clinical trial.  
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Conclusion 

In this funding period, I have accomplished the proposed research for year 1. Specifically, I have 
completed the Tasks 1 and 2 in Aim 1, the Tasks 3 and 4 in Aim 2 and the Task 5 in the Aim 3 
outlined in the Statement of Work. I have had a very productive funding period, in which we have 
published 26 abstracts, 6 conference papers, 8 peer-reviewed journal papers and two pending 
patents. I achieved 9 key research accomplishments and 8 reportable outcomes. In addition, I 
received the Science Council Research Award from American Association of Physicists in 
Medicine (AAPM), the Young Scientist Award from the International Society for Optics and 
Photonics (SPIE) and the Emory Outstanding Postdoctoral Award. I am looking forward to 
working on the Tasks 6 and 7 in Aim 3 and successful completing the proposed research in the 
coming funding year. 
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Predict Late Toxicity In Breast-cancer Radiotherapy: A Prospective Longitudinal Study
with Quantitative Ultrasound Imaging", ASTRO annual meeting, 2013.

7. Yang X, Rossi P, Ogunleye T, Curran W and Liu T. "Integration of Intra-operative
Ultrasound-volume Into CT-based Treatment Planning in Prostate HDR Brachytherapy: A
Pilot Study", ASTRO annual meeting, 2013. *

8. Yang X, Beitler J, Yu D, Tridandapani S, Bruner D, Curran W and Liu T. "Quantitative
Ultrasound Evaluation of Post-Radiotherapy Sialadenitis and Fibrosis of the Parotid
Glands in Patients following Head-and-Neck Radiotherapy", ASTRO annual meeting,
2013. *

9. Yang X, Shelton J, Rossi P, Bruner D, Tridandapani S and Liu T. “Multi-parametric
Ultrasound Imaging of Vaginal Fibrosis Following Radiotherapy for GYN Malignancies”,
ASTRO annual meeting, 2013. *

10. Wang Y, Liu T, Rossi P, Bruner D, Hsiao W, Cooper S, Yang X and Jani A. “Influence of
Vascular Comorbidities and Race on Erectile Dysfunction after Prostate Cancer
Radiotherapy”, ASTRO annual meeting, 2013. *

11. Lin Y, Liu T, Yang X, Wang Y and Khan M. “Respiratory Induced Prostate Motion Using
Wavelet Decomposition of the Real-Time Electromagnetic Tracking Signal”, ASTRO
annual meeting, 2013. *

12. Lin Y, Liu T, Wang W, Yang X and Khan M. “The Non-Gaussian Nature of Prostate
Motion Based on Real-Time Intra-fraction Tracking”, ASTRO annual meeting, 2013. *

13. Eaton B, Liu T, Yang X, Mister D, Zhao Y, Miller A, Long Q, and Torres M. "Perceived
Stress Predicts for Acute Radiation-Induced Skin Toxicity: Evidence for the Mind-Body
Connection", ASCO annual meeting, 2014.

14. Lee A, Yang X, Mister D, Liu T and Torres M. “Cutaneous toxicity and recovery: Is there
a difference between breast cancer patients treated with daily radiotherapy in the morning
versus the afternoon?” ASCO annual meeting, 2014.

15. Yang X, Rossi P, Bruner D, Tridandapani S and Liu T. “Development of 2D and 3D
Quantitative Ultrasound Method to Assess Radiation-Induced Vaginal Fibrosis in Women
Following Radiotherapy for GYN Cancers”, AIUM annual meeting, 2014. (Oral)*

16. Yang X, Torres M, Kirkpatrick S, Curran W and Liu T. “Quantitative Assessment of Arm
Lymphedema Using Ultrasound 2D Strain Estimate Based on Non-Rigid Registration: A
Feasibility Study”, AIUM annual meeting, 2014. (Oral)*

17. Liu T, Yang X, Curran W and Torres M. “A Prospective Comparative Study of Skin
Toxicity between Standard and Hypofractionated Breast-Cancer Radiotherapy using
Quantitative Ultrasound Imaging”, AIUM annual meeting, 2014. (Oral)*

18. Yang X, Liu T, Marcus D, Jani A, Ogunleye T, Curran W and Rossi P. “A Novel
Ultrasound-CT Deformable Registration Process Improves Physician Contouring during
CT-based HDR Brachytherapy for Prostate Cancer”, ABS annual meeting, 2014. *

19. Yang X, Rossi P, Ogunleye T, Curran W and Liu T. "3D Localization of Neurovascular
Bundles through MR-TRUS Registration in Prostate Radiotherapy", AAPM annual
meeting, 2014. (Oral)*
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20. Yang X, Rossi P, Marcus D, Jani A, Ogunleye T, Curran W and Liu T. “MR-TRUS
Prostate Registration Using Patient-Specific Tissue Elasticity Property Prior for MR-
targeted, TRUS-guided HDR Brachytherapy”, AAPM annual meeting, 2014. (Oral)*

21. Liu T, Yu D, Beitler J, Tridandapani S, Bruner D, Curran W and Yang X. " Gaussian
mixture model analysis of radiation-induced parotid-gland injury: an ultrasound study of
acute and late xerostomia in head-and-neck radiotherapy", AAPM annual meeting, 2014.
(Oral)*

22. Liu T, Yang X, Curran W and Torres M. "GLCM Texture Analysis for Normal-tissue
Toxicity: A Prospective Ultrasound Study of Acute Toxicity in Breast-Cancer
Radiotherapy", AAPM annual meeting, 2014. (Oral)*

23. Gao Y, Lee A, Fishman K, Yang X and Liu T. "Semi-automatic Segmentation of Skin
Cancer in High-frequency Ultrasound Images: Initial Comparison with Histology", AAPM
annual meeting, 2014. (Oral)*

24. Lee A, Johnson J, Yang X, Torres M, Curran W and Liu T. "Inter- and Intra-operator
Reproducibility of Cutaneous Toxicity Measurements Using Quantitative Ultrasound",
ASTRO annual meeting, 2014.*

25. Yang X, Torres M, Curran W and Liu T. “Ultrasound Texture Features as Potential Early
Imaging Biomarkers for Normal-tissue Toxicity in breast-cancer radiotherapy”, ASTRO
annual meeting, 2014.

26. Yang X, Rossi P, Marcus D, Jani A, Ogunleye T, Wang Y, Curran W and Liu T.
“Integration of MR images into ultrasound for 3D Doppler imaging of the neurovascular
bundle in prostate radiotherapy: A pilot study”, ASTRO annual meeting, 2014. *

27. Yang X, Rossi P, Ogunleye T, Curran W and Liu T. “A CT Prostate Segmentation for
Ultrasound-Guided CT-Based HDR Brachytherapy”, SPIE annual meeting, 2014. *

28. Yang X, Rossi P, Bruner D, Tridandapani S and Liu T. “3D Ultrasound Nakagami Imaging
for Radiation-induced Vaginal Fibrosis”, SPIE annual meeting, 2014. *

29. Yang X, Torres M, Kirkpatrick S, Curran W and Liu T. “Ultrasound 2D Strain Estimator
Based on Non-rigid Registration for Ultrasound Elastography”, SPIE annual meeting,
2014. *

Inventions, Patents and Licenses 

1. Yang X, Liu T and Rossi P. “Systems, Methods and Computer Readable Storage Media
Storing Instructions for Generating Planning Images Based on Prostate HDR Applicators”,
filed in Oct. 2013. (61/986,410, Pending)

2. Yang X, and Liu T. “System and Method for Using Medical Image Fusion in Image-
Guided Prostate Interventions”, filed in March. 2014. (Emory Ref: 14094, Pending)

Reportable Outcomes 

1. Our paper entitled “Prostate CT Segmentation Method Based on Deformable Registration
in Ultrasound-Guided CT-Based HDR Prostate Brachytherapy (Yang et al., 2014e)” was
accepted for publication in the Medical Physics, the scientific journal of the American
Association of Physicists in Medicine (AAPM) and is an official science journal of the
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Canadian Organization of Medical Physicists, the Canadian College of Physicists in 
Medicine, and the International Organization for Medical Physics (IOMP), which was the 
top physics journal in the radiation oncology field. 

2. Two papers entitled “Respiratory Induced Prostate Motion Using Wavelet Decomposition
of the Real Time Electromagnetic Tracking Signal (Lin et al., 2013b)” and “The Non-
Gaussian Nature of Prostate Motion Based on Real-Time Intra-fraction Tracking (Lin et al.,
2013a)” were published in the International Journal of Radiation Oncology • Biology •
Physics (IJROBP), the official journal of American Society for Radiation Oncology
(ASTRO). ASTRO's Annual Meeting is the premier radiation oncology scientific event in
the world and draws more than 11,000 attendees each year. One paper entitled “Influence
of Vascular Comorbidities and Race on Erectile Dysfunction after Prostate Cancer
Radiotherapy” (Wang et al., 2013) was published in Journal of Sexual Medicine.

3. Our three conference papers entitled “A new CT prostate segmentation for CT-based HDR
brachytherapy (Yang et al., 2014d)”, “Ultrasound 2D strain estimator based on image
registration for ultrasound elastography (Yang et al., 2014h)”, and “3D ultrasound
Nakagami imaging for radiation-induced vaginal fibrosis (Yang et al., 2014f)” were
published in the Proceeding of SPIE on Medical Imaging in 2014.

4. Three conference papers entitled “MR-TRUS Registration Based on Subject-Specific
Biomechanical Model for Image-Guided Prostate Interventions (Yang et al., 2015a)” and
“A New 3D Neurovascular Bundles (NVB) Segmentation Method based on MR-TRUS
Deformable Registration (Yang et al., 2015c)” and “3D Prostate Segmentation in
Ultrasound Images Using Patch-Based Anatomical Feature (Yang et al., 2015b)” was
submitted to the SPIE Medical Imaging 2015.  Currently, two papers have been accepted
and one is under review.

5. Two patents entitled “Systems, Methods and Computer Readable Storage Media Storing
Instructions for Generating Planning Images Based on prostate HDR Applicators (Yang et
al., 2013a)” and “System and Method for Using Medical Image Fusion in Image-Guided
Prostate Interventions (Yang and Liu, 2014)” were filed between 2013 and 2014.

6. I gave 16 presentations at five international conferences, the annual meeting of American
Society for Radiation Oncology (ASTRO) in Atlanta, GA in October 2013, the annual
meeting of American Association of Physicists in Medicine (AAPM) in Austin, TX in July
2014, the annual meeting of the annual meeting of The International Society for Optical
Engineering (SPIE) on Medical Imaging in San Diego, CA in February 2014, the annual
meeting of American Brachytherapy Society (ABS) in San Diego, CA in April 2014, and
the annual meeting of American Institute of Ultrasound in Medicine (AIUM), Las Vegas,
NV, in April, 2014.

7. My work on prostate segmentation and registration was awarded the “Science Council
Research Award” by AAPM in 2013 and “Young Scientist Award” by SPIE Medical
Imaging in 2014. Because of my productive research achievements, I was awarded the
Emory Outstanding Postdoctoral Award (<1%) in 2013.

Other Achievements (Awards) 

During this funding period, I received the following scientific awards: 
1. Science Council Research Award: Our prostate segmentation research on improving the

accuracy of prostate volume delineation during prostate radiotherapy received the Science 
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Council Research Award at the 55th annual meeting of American Association of Physicists 
in Medicine (AAPM), Indianapolis, IN, in October, 2013;  

2. Young Scientist Award: I was honored with the Young Scientist Award for my prostate 
registration work on the image-guided prostate brachytherapy by the SPIE Medical 
Imaging, San Diego, CA, in February, 2014;  

3. Outstanding Postdoctoral Award: In November 2013, I was awarded the Emory 
Outstanding Post-doctoral Award (top 4 out of 700+) because of my productive research 
achievements.     

4. Finalist for the Young Investigator Award: I was selected as one of the finalists of the 
Young Investigator Award for our novel ultrasound imaging work on evaluating radiation-
induced toxicity following cancer radiotherapy by American Institute of Ultrasound in 
Medicine (AIUM), Las Vegas, NV, in April, 2014.  

 

 
 
 
 

The Science Council Research Award at 55th annual 
meeting of the AAPM (October, 2013) 
 

Young Scientist Award at the 2014 annual meeting 
of the SPIE Medical Imaging (February, 2014) 
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Prostate CT segmentation method based on nonrigid registration
in ultrasound-guided CT-based HDR prostate brachytherapy
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Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate
(HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation
in cancer radiotherapy. Prostate HDR treatment involves placing the HDR catheters (needles) into
the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation
treatment plan based on CT prostate images, and subsequently delivering high dose of radiation
through these catheters. The main challenge for this HDR procedure is to accurately segment the
prostate volume in the CT images for the radiation treatment planning. In this study, the authors
propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment
planning CT images to provide an accurate prostate delineation for the prostate HDR treatment.
Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating
room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are then
used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS
and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion.
After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment
planning. This method was first validated with a prostate-phantom study. In addition, a pilot study
of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility.
The accuracy of their approach was assessed through the locations of three implanted fiducial (gold)
markers, as well as previous T2-weighted MR images of patients.
Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41
±0.11 mm. For the ten patients, the TRE of gold markers was 1.18±0.26 mm; the prostate volume
difference between the authors’ approach and the MRI-based volume was 7.28%±0.86%, and the
prostate volume Dice overlap coefficient was 91.89%±1.19%.
Conclusions: The authors have developed a novel approach to improve prostate contours utilizing
intraoperative TRUS-based prostate volume in CT-based prostate HDR treatment planning, demon-
strated its clinical feasibility, and validated its accuracy with MRIs. The proposed segmentation
method would improve prostate delineations, enable accurate dose planning and treatment delivery,
and potentially enhance the treatment outcome of prostate HDR brachytherapy. C 2014 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4897615]

Key words: prostate, CT, segmentation, transrectal ultrasound (TRUS), HDR brachytherapy

1. INTRODUCTION

Radiotherapy is an important treatment modality for localized
prostate cancer. The past few decades have witnessed a signif-
icant evolution in radiation techniques, such as the intensity-
modulated radiation therapy (IMRT) and high-dose-rate
(HDR) brachytherapy. In particular, the technological advances
in real-time ultrasound (US) image guidance for HDR pros-
tate brachytherapy have placed this treatment modality at the
forefront of innovation in the field of cancer radiotherapy.1

HDR prostate brachytherapy involves using a radiation
source (Iridium-192) to deliver high radiation dose to the pros-

tate gland through a series of catheters that are temporarily
placed within the prostate transperineally under transrectal
ultrasound (TRUS) guidance.2 This HDR procedure allows
the dose delivered to surrounding normal tissues to be mini-
mized, thereby permitting safe dose escalation to the prostate
gland.3–6 Recent data clearly show an improved efficacy of
this treatment approach in patients with locally advanced can-
cer when compared with conventional 3D external beam and
IMRT techniques.7 As a result, an increasing number of men,
many of younger ages, are undergoing prostate HDR brachy-
therapy instead of radical prostatectomy for localized prostate
cancer.8,9

000000-1 Med. Phys. 41 (11), November 2014 0094-2405/2014/41(11)/000000/13/$30.00 © 2014 Am. Assoc. Phys. Med. 000000-1
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The key to the success of HDR prostate brachytherapy is the
accurate segmentation of the prostate in treatment-planning
CT images. If the prostate is not accurately localized, high ther-
apeutic radiation dose could be delivered to the surrounding
normal tissues (e.g., rectum and bladder) during the treatment,
which may cause severe complications such as rectal bleed-
ing. More importantly, this may also lead to an undertreatment
of cancerous regions within the prostate gland, and therefore,
result in poor treatment outcome.

In the clinic, physicians’ manual segmentation of the pros-
tate on CT images is a common practice and the gold stan-
dard in prostate radiotherapy.10,11 Prostate CT segmentation
is challenging mainly due to the low image contrast between
the prostate and its surrounding tissues and the uncertainty in
defining the prostate base and apex on CT images. It is well-
known that the accuracy and reproducibility of prostate vol-
ume manually contoured on CT images are poor.10–15 Dubois
et al. showed that a large variation and inconsistency existed in
CT-based prostate contours among physicians.11 Hoffelt et al.
reported that CT consistently overestimated the prostate vol-
ume by approximately 50% compared with TRUS.15 Roach
et al. found that CT-defined prostate volume was on average
32% larger (range 5%–63%) than MRI-defined prostate vol-
ume.13 Rasch et al. demonstrated that CT-derived prostate vol-
umes were larger than MR-derived volumes, and the average
ratio between the CT and MR prostate volumes was 1.4, which
was significantly different from 1 (p < 0.005).14

Many CT prostate segmentation technologies have been
investigated in recent years, such as the models-based,16–21

classification-based,22–27 and registration-based28,29 methods
(detailed in Sec. 4). Most of these segmentation approaches
are based on the appearance and texture of the prostate gland
on CT images. In prostate HDR brachytherapy, prostate CT
images are acquired after the insertions of the HDR catheters.
The frequently used metal catheters introduce considerable
artifacts to the CT images, as shown in Fig. 1. These artifacts
often smear the appearance and texture of the CT prostate
images; therefore, these previous methods may not work well
for the prostate HDR application.

Studies have shown that TRUS and MRI are superior
imaging modalities in terms of prostate contour as compared
with CT;30,31 and both TRUS-defined and MRI-defined pros-
tate volumes have been shown to correlate closely with the

prostate volume on pathologic evaluation.30,32 In this paper,
we propose a new approach that integrates an intraopera-
tive TRUS-based prostate volume into treatment planning
through TRUS–CT fusion based on catheter locations.

2. METHODS AND MATERIALS

2.A. Prostate segmentation method

Our prostate segmentation approach for the HDR prostate
brachytherapy involves five major steps (Fig. 2): (1) The 3D
TRUS prostate images are captured after the catheter inser-
tions during the HDR procedure; (2) A postoperative CT scan
is obtained with all catheters for the brachytherapy treatment
planning; (3) The prostate volume is contoured (segmented)
in the TRUS images; (4) The HDR catheters in the 3D TRUS
and CT images are reconstructed; (5) The TRUS–CT image
registration is performed using HDR catheters as landmarks,
and the TRUS-based prostate volume is integrated into the
3D CT images for HDR treatment planning.

2.A.1. 3D intraoperative TRUS image acquisition

The TRUS scan was performed in the operating room after
the catheter insertions. The 3D TRUS images were captured
with a clinical ultrasound scanner (HI VISION Avius, Hitachi
Medical Group, Japan) and a transrectal 7.5 MHz prostate
biplane probe (UST-672-5/7.5). During the data acquisition,
the transrectal probe was held with a mechanical SurePoint
stepper (Bard Medical, Inc., GA) to allow for a manual step-
wise movement along the longitudinal axis. The patient was
scanned in the lithotomy position and a series of parallel axial
(transverse) scans were captured from the apex to the base
with a 1 or 2 mm step size to cover the entire prostate gland
plus 5–10 mm anterior and posterior margins. For a typical
prostate, 30–40 TRUS images would cover 60–80 mm in the
longitudinal direction (with a 2 mm step size).

2.A.2. CT image acquisition for HDR treatment
planning

After the catheter insertion and TRUS scan, the patient
was then transferred to a CT simulation room to obtain 3D
CT images for HDR treatment planning (Electra Oncentra

(a) (b) (c)

F. 1. Significant artifacts induced by the HDR metal catheters (white dots) in axial CT prostate images: (a) prostate base, (b) prostate midgland, and (c)
prostate apex.
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F. 2. Flow chart of integrating TRUS-based prostate volume into CT-based HDR treatment planning.

v4.3). Even though MRI has better soft tissue contrast than
CT,33 using the MR images for treatment planning is, how-
ever, problematic.1 For example, most HDR catheters are not
MRI compatible and catheter reconstructions can be diffi-
cult with MRIs. MRI is more expensive and less available as
compared with CT, therefore, CT is still the most-commonly
used image modality for radiotherapy dose calculation.1 The
treatment planning CT was acquired following standard CT
protocol. A helical CT scan was taken after 40 mL of contrast
was injected into the bladder and a rectal marker was placed
into the rectum. All patients were scanned in head first su-
pine, feet-down position without the probe or immobilization
device. The slice thickness was 1.0 mm through the whole
pelvic region, and the matrix size was 512×512 pixels with
0.68×0.68 mm2 pixel size.

2.A.3. Prostate volume contour in TRUS images

A radiation oncologist manually contoured the prostate
volumes using TRUS prostate images. For a typical pros-
tate of 50 mm, with 2 mm slide thickness, approximately
25 TRUS slides needed to be contoured. In general, it takes
5–15 min to contour a prostate volume. Although this might
be time consuming, because the TRUS images are greatly
degraded due to the HDR catheter insertion, we feel manual
contours would provide the most accurate prostate volumes.

2.A.4. Catheter reconstruction in TRUS and CT images

For TRUS images, catheter reconstruction is challeng-
ing due to the artifacts induced by the multiple scattering
from HDR catheters. As shown in Fig. 3, bright band/tail

(a) (b)

F. 3. Catheter artifacts on TRUS images. (a) Bright band artifacts seen on a longitudinal TRUS image, and (b) HDR catheters reconstruction on the axial
TRUS image.
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and dark shadow artifacts34 are present on the longitudinal
[Fig. 3(a)] and axial [Fig. 3(b)] TRUS images. To deal with
these artifacts, we used a manual catheter reconstruction
method. Specifically, we first located the tips of all catheters
located close to the base of the prostate. We then identified the
brightest point of each catheter and placed 2 mm circles on
an axial TRUS image. Such operation was repeated on every
three to four slides, and catheter locations on the skipped slides
were interpolated. The final step was 3D catheter reconstruc-
tion for the TRUS prostate images. For CT images, we were
able to use the threshold method to automatically detect the
HDR catheters because of the high contrast between the HDR
catheters and soft tissue. We tested a range of HU thresholds
in this study and the best threshold of 950 HU was determined
by matching the catheter diameter on the CT image to the real
catheter diameter of 2 mm.

2.A.5. TRUS–CT registration

2.A.5.a. Landmarks similarities. In this study, we used
HDR catheters as landmarks for image registration. In gen-
eral, the catheters were uniformly and symmetrically distrib-
uted inside the prostate gland except for regions near the
urethra where catheters were placed at least 5 mm away from
the urethra. In other words, the catheters followed uniform
spacing along the periphery with several interior catheters.
After catheter insertion, the catheters were locked onto a nee-
dle template which was fixed onto the patient throughout the
HDR brachytherapy. This is critically to ensure no relative
displacement among the catheters and no catheter movement
inside the prostate gland during intraoperative TRUS scan,
planning CT scan, and final dose delivering. Such evenly
distributed catheters will provide exceptional landmarks for
the TRUS–CT registration to capture the nonrigid prostate
deformation between TRUS and CT images. The correspond-
ing catheter pairs in CT and TRUS images with the same
number were used as landmarks to improve our registration
accuracy.

Our TRUS–CT registration method was performed by
matching the catheter locations, where xCT

i and yTRUS
i are the

landmark point sets on the catheter surface from the planning
CT and TRUS images, respectively. We assumed the detected
catheters’ surface is {x |i = 1, . . ., I} in the CT image, and
{y | j = 1, . . ., J} in the TRUS image. The correspondences
between xCT

i and yTRUS
i are described by a fuzzy correspon-

dence matrices P. We defined a binary corresponding matrix
P with dimension (I+1)× (J+1)

p=




p11 · ·· p1J p1,J+1
...

. . .
...

...

pI1 · ·· pI J pI,J+1

pI+1,1 · ·· pI+1,J 0




. (1)

The matrix P= {pi j} consists of two parts. The I× J inner
submatrix defines the correspondences of X and Y . It is worth
noting that pi j have real values between 0 and 1, which denote
the fuzzy correspondences between the landmarks.35 If xi is

mapped to y j, then pi j = 1, otherwise pi j = 0. The (J+1)th
column and the (I+1)th row define the outliers in X and Y ,
respectively. If a landmark cannot find its correspondence, it is
regarded as an outlier and the extra entry of this landmark will
be set as 1. That is, if xi is an outlier, then there is pi,J+1= 1.
Similarly, if y j is an outlier, then there is pI+1, j = 1. P sat-
isfies the row and column normalization conditions, and P is
subject to {I+1

i=1 pi j = 1( j = 1, · ··, J);J+1
j=1 pi j = 1(i = 1, · · ·, I);

pi j ∈ [0,1]}.
2.A.5.b. Similarity function. In this study, the similarity

between two sets of catheter landmarks xi and y j in TRUS
and CT images can be defined by a Euclidean distance be-
tween their point sets. We used a soft assign technique allow-
ing P to take values from interval [0, 1] in energy function.36

The continuous property of P acknowledges the ambiguous
matches between X and Y . For the catheter landmarks, our
registration task is to find an optimal correspondence matrix
P and an optimal spatial transform f , which matches these
two points’ sets, X and Y , as closely as possible. Therefore,
the following energy function for registration between TRUS
and CT images is minimized,35,37

E( f )= α
I

i=1

J
j=1

pi j
yTRUS

j − f (xCT
i )

2


+δ

I
i=1

J
j=1

pi j log(pi j)− ξ
I

i=1

J
j=1

pi j

+λ




(x, y,z)∈ΩM


∂2 f
∂x2 +

∂2 f
∂ y2 +

∂2 f
∂z2

2

dxdydz


2

, (2)

where α, δ, ξ, and λ are the weights for the energy terms.
pi j is the fuzzy correspondence matrix. f denotes the trans-
formation between the TRUS and CT images. The first term
is the geometric feature-based energy term defined by the Eu-
clidean distance. Similarly the space between xCT

i and yTRUS
i

is measured by the Euclidean distance—a smaller distance
indicates a higher similarity between them. The second term
is an entropy term that comes from the deterministic an-
nealing technique,38 which is used to directly control the
fuzziness of P. δ is called the temperature parameter. The
third term is used to direct the correspondences matrices P
converging to binary, and is used to balance the outlier rejec-
tion. As δ is gradually reduced to zero, the fuzzy correspon-
dences become binary. The first three terms constitute the
similarity metric on both catheter landmarks in TRUS and
CT images. The last term is the regularization of the transfor-
mation, which is described by the bending energy of f . In a
nonrigid registration, smoothness is necessary to restrict the
mappings from not being too arbitrary. The local deformation
ought to be characterized as a smooth function to discourage
arbitrary unrealistic shape deformation. So this smoothness
penalty term is introduced to regularize the local deformation
by the second order spatial derivatives. For the registration,
parameter α in Eq. (2) was set to 0.5, and δ, ξ, and λ were
three dynamic parameters that were initially set as 1 and
decreased to 0.05 with the progress of iterations.35,37,39

The overall similarity function can be minimized by an
alternating optimization algorithm that successively updates
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the correspondences matrix pi j and the transformation func-
tion f . First, with the fixed transformation f , the correspon-
dence matrices between the landmarks are updated by mini-
mizing E( f ). The updated correspondence matrices are then
treated as the temporary correspondences between the land-
marks. Second, with the fixed temporary correspondence ma-
trix pi j, the transformation function f is updated. The two
steps are alternatively repeated until there are no updates
of the correspondence matrices P. By optimizing an overall
similarity function that integrates the similarities between the
landmarks and the smoothness constraints on the estimated
transformation between the TRUS and CT images, the corre-
spondences between the landmarks and importantly the dense
transformation between the TRUS and CT images can be
simultaneously obtained.

2.A.5.c. Transformation model. The transformation be-
tween TRUS and CT images are represented by a general
function, which can be modeled by various function bases
(e.g., multiquadratic,40 thin-plate spline (TPS),41,42 radial ba-
sis,43 or B-spline44). In this study, we chose the B-splines as
the transformation basis. Unlike the TPS or the elasticbody
splines, the B-splines translation of a point is only deter-
mined by the area immediately surrounding the control point,
resulting in locally controlled transformation. In the case of
the HDR procedure, the major deformations are caused by
a transrectal probe, and are spatially localized; therefore, a
locally controlled transformation would be advantageous for
registering TRUS images, and result in smooth transforma-
tion fields.45

2.B. Prostate-phantom experiments

In order to validate the prostate segmentation method,
we first conducted experiments with a multimodality pros-
tate phantom (CIRS Model 053). In this phantom, a tissue-
mimicking prostate, along with structures simulating the rectal
wall, seminal vesicles, and urethra, is contained within an
11.5×7.0×9.5 cm3 clear plastic container. For the US scan,
a HI VISION Avius US machine (Hitachi Medical Group,
Japan) with a 7.5 MHz prostate biplane probe (UST-672-5/7.5)
was used. To mimic a prostate HDR procedure, 14 HDR
catheters were implanted into the prostate under US guidance
and the prostate was deformed by the pressure of the US
probe during the ultrasound scan. The voxel size of the 3D
US dataset was 0.08×0.08×0.50 mm3. Figure 4(a) shows the
axial, coronal, and sagittal US images of the prostate phan-
tom. For the CT scan, a Philips CT scanner (Philips, The
Netherlands) was used, and the prostate was not deformed
during the CT scan. The voxel size of the 3D CT dataset was
0.29×0.29×0.80 mm3. Figure 4(b) shows the axial, coronal,
and sagittal CT images of the prostate phantom.

The registration accuracy was evaluated using the fiducial
localization error (FLE) and target registration error (TRE).
The registration’s accuracy depends on the FLE, which is the
error in locating the fiducials (points) employed in the regis-
tration process.46 In this study, we used reconstructed cathe-
ters from TRUS and CT images as fiducials (landmarks) to

perform the registration, so the mean surface distances of the
corresponding catheters between the CT and postregistration
TRUS images were used to quantify the FLE. The TRE is an
important measure of the accuracy of the performed registra-
tion, which is the distance, after registration, between a pair
of corresponding fiducials that are not used in the registration
process.46 In this study, the displacements of gold markers
between the CT and postregistration TRUS images were used
to quantify the TRE.

To evaluate the segmentation accuracy, we compared the
surface, and absolute and DICE volume difference of anatom-
ical structures (prostate and urethra) between the CT and
postregistration TRUS images, which are the two essential
measurements in the morphometric assessments. The segmen-
tation accuracy was quantified with three surface measures
(average surface distance, root-mean square (RMS), and
maximum surface distance) and two volume measures (abso-
lute volume difference and Dice volume overlap).

2.C. Preliminary clinical study

We conducted a retrospective clinical study with ten pa-
tients who had received HDR brachytherapy for localized pros-
tate cancer between January and June 2013. In this group of ten
patients, 12–16 catheters (mean±STD: 14.6±1.4) were im-
planted. The same Hitachi US machine and Philips CT scanner
detailed in the phantom study were used to image the patients.
For TRUS images, the voxel size was 0.12×0.12×1.00 mm3

for three patients and 0.12×0.12×2.00 mm3 for the remaining
seven patients. For the planning CT images, the voxel size was
0.68×0.68×1.00 mm3 for all patients. The accuracy of our
approach is assessed through the locations of three implanted
gold markers, as well as previous T2-weighted MR images of
the patients. To evaluate the accuracy of the prostate registra-
tion, we calculated the TRE and FLE.

In this pilot study, all patients had previous diagnostic MR
scans of the prostate. As compared with CT, MRI has high
soft tissue contrast and clear prostate boundaries.33 Studies
have shown that accurate prostate volumes can be obtained
with both MRI and US.30,31,47 Hence, in this study, we used
prostate contours from the MR images as the gold standard to
evaluate our prostate segmentation method. All patients were
scanned in feet-down supine position with a body coil using
a Philips MRI with a voxel size of 1.0×1.0×2.00 mm3. All
prostates were manually segmented from the T2-weighted
MR images. Because of various patients’ positioning during
CT and MR scans, the prostate shape and size may vary be-
tween the MR and CT images. To compute the volume differ-
ence and Dice overlap between the MRI-defined prostate and
our TRUS-based segmented prostate, we registered the MR
images to CT images48–50 and then applied the correspond-
ing deformation to the respective prostates of MR images to
obtain the MRI-based prostate volume.

To evaluate interobserver reliability of the prostate manual
contours, three observers (two radiologists and one US phys-
icist) were asked to independently contour the prostate US
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

F. 4. 3D TRUS–CT registered results of the prostate phantom. (a1)–(a3) are TRUS images in the axial, coronal, and sagittal directions; (b1)–(b3) are CT images
in three directions; (c1)–(c3) are the postregistration TRUS images; (d1)–(d3) are the TRUS–CT fusion images, where the prostate volume is transformed from
original preregistration TRUS images. The close match between the gold marker (red arrows) and catheters in TRUS and CT demonstrates the accuracy of our
method.

and MR images of six subjects. Each observer was blinded
to other observers’ contours. The variations of the prostate
volume were calculated for assessment of consistency among
measurements by the three observers. In addition, the effect of
interobserver segmentation was further evaluated by compar-
ing the variations of our automated segmentation results based
on each observer’s contours.

Q1

To evaluate intraobserver reliability of the prostate manual
contours, one observer was asked to contour the prostate of
the six sets of US and MR images twice. The time between
the first and second contours was roughly 5 months, which
was long enough to reduce recall bias. From these contours,
the variations of the prostate volume were computed for
assessment of consistency among measurements by the same
observer. In addition, the effect of intraobserver segmenta-
tion was further evaluated by comparing the variations of our
automated segmentation results based on the same observer’s
contours performed at two different times.

3. RESULTS

3.A. Prostate-phantom study

3.A.1. Registration accuracy

The prostate [Fig. 4(a), yellow dotted line] and the urethra
were manually contoured on the TRUS images. The catheters
were reconstructed on both TRUS and CT images. Figure 4(c)
shows the postregistration TRUS images, and Fig. 4(d) shows
the fusion images between the postregistration TRUS and CT
images. From Fig. 4, we can obtain a visual assessment of the
catheter and gold-marker match between the postregistration
TRUS and CT images. To further quantify the accuracy of
the registration, we calculated the three gold markers between
the postregistration TRUS and CT images. The length of each
gold marker is 3 mm, therefore the gold marker was often
seen on two to three consecutive postregistration TRUS and
CT images (0.8 mm slice thickness) and we used the center
position (x,y , and z coordinates) to calculate the TRE of
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T I. TRE between the centers of three gold markers for prostate
phantom.

Gold
markers ∆X ∆Y ∆Z

Distance
(mm)

1 1 2 0 0.51
2 0 1 0 0.29
3 1 1 0 0.42

Mean ± STD 0.41 ± 0.11

each gold marker between the CT and postregistration TRUS
images. Table I illustrates the TRE for three gold markers,
and the mean TRE is 0.41±0.11 mm. For the FLE, the mean
surface distance of the catheter pairs between the CT and
postregistration TRUS images is 0.18±0.15 mm.

3.A.2. Segmentation accuracy

Figure 5 provides a 3D visualization comparison of the
prostate and urethra between our segmentation results and the
gold standards (manual segmentations from CT images). The
quantitative evaluations of the surface distance and volume
difference between the prostate and urethra of TRUS and CT
images of the prostate phantom are shown in Table II. The vol-
ume of the phantom prostate is 53.53 cm3. For both prostate
and urethra, the mean surface distance, RMS, and maximum
surface distance between our segmentations and the gold stan-
dards are in submillimeter or millimeter range. The less than
2% absolute volume difference and the more than 97% Dice
volume overlap for both structures demonstrate the accurate
volume segmentation of our proposed TRUS-based segmen-
tation method. Not only can the proposed method accurately
segment the prostate, it can also accurately segment the
urethra—a smaller structure, located in the center of prostate,
which further indicates the robustness of our proposed method.

3.B. Preliminary clinical study

3.B.1. Registration accuracy—comparison of gold
markers

Here, we used the case of a 58-yr-old patient who received
HDR treatment for the intermediate prostate cancer to demon-
strate our proposed segmentation method. Figure 6(a) shows

T II. Surface distance and volume difference between our segmentations
and CT-defined structures.

Volume difference (%)

Surface distance (mm)
Absolute
volume Dice volume

Mean± STD RMS Max difference overlap

Prostate 0.39 ± 0.25 0.41 1.32 1.65 97.84
Urethra 0.20 ± 0.16 0.21 0.68 1.83 97.75

the intraoperative TRUS images and Fig. 6(b) displays the
treatment planning CT images after catheter insertion. The
fusion images between the planning CT and postregistration
TRUS [Fig. 6(c)] are shown in Fig. 6(d). The prostate contour
in the intraoperative TRUS image [Fig. 6(a)] was deformed to
the postregistration TRUS, based on a deformable TRUS–CT
registration. Finally, the prostate volume in TRUS images was
integrated into the treatment planning CT.

Seven patients received combined radiotherapy (external
beam radiotherapy plus HDR brachytherapy) for prostate can-
cer treatment, while three patients received HDR monother-
apy. For patients receiving combined radiotherapy, three gold
markers were implanted before their external beam radio-
therapy for the prostate localization during treatment. For
patients receiving monotherapy, three gold markers were im-
planted during the HDR procedure for the prostate localiza-
tion. Three gold markers were placed at the base, middle, or
apex of the prostate under the TRUS guidance.

We calculated the TRE of the gold markers and the FLE
of the HDR catheters in CT and postregistration TRUS im-
ages to evaluate the accuracy of our registration, as shown in
Fig. 7. This figure shows the TRE and FLE for ten patients.
Overall, the TRE of the gold markers for all patients was
1.18±0.26 mm, and the FLE (mean surface distance) of the
HDR catheters for all patients was 0.33±0.09 mm. The close
match between the gold markers and the HDR catheters in
the TRUS and CT demonstrated the accuracy of our method.

3.B.2. Segmentation accuracy—comparison with MR
prostate volume

Here, we used the same 58-yr old patient, shown in Fig. 6,
to illustrate the comparison between our TRUS-based prostate

(a) (b) (c) (d)

F. 5. 3D comparison of segmented prostate and urethra with the gold standards. (a) 3D prostate overlap comparison between the postregistration TRUS (red)
and gold-standard CT (yellow); (b) 3D urethra overlap between the postregistration TRUS (red) and CT (yellow); (c) 3D overlap of the urethra inside the
prostate; (d) 3D result of the prostate and urethra in 3D CT image.
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(a1) (b1) (c1) (d1)

(a2) (b3) (c2) (d2)

(a3) (b3) (c3) (d3)

F. 6. Integration of TRUS-based prostate volume into postoperative CT images. (a1)–(a3) are TRUS images in axial, coronal, and sagittal directions; (b1)–(b3)
are the postoperative CT; (c1)–(c3) are the postregistration TRUS images; (d1)–(d3) are the TRUS–CT fusion images, where the prostate volume is integrated.
The close match between the gold markers (red arrows) in the TRUS and CT demonstrates the accuracy of our method.

segmentation and the MR-defined prostate volume. Figure 8(a)
shows the treatment planning CT images. Figure 8(b) shows
the CT images with the MRI-defined prostate volume and the
MRI-defined prostate volume of this patient is 40.9 cm3. Figure
8(c) shows the CT images with our TRUS-based segmented
prostate volume, and our segmented prostate volume for this
patient is 38.2 cm3. Figure 8(d) displays the 3D overlap shown
in yellow between our TRUS-based prostate volume, shown
in red, and MR-based prostate volume, shown in green. The
absolute prostate volume difference of this patient is 6.51%
and the Dice volume overlap is 92.77%. Large yellow overlap
areas at three directions show a close match of the prostate con-
tours obtained from our prostate segmentation and the MRI-
defined boundary (ground truth). In particular, our segmenta-
tion matched very well with the MR-defined prostate at the

F. 7. The TRE of the gold markers and the FLE of the HDR catheters for
ten patients.

base and apex, which is usually a difficult area to segment on
CT images.

In Table III, the mean surface distance, absolute pros-
tate volume differences, and Dice volume overlaps between
our segmented prostate and MR-defined prostate of all ten
patients are displayed. The average prostate-surface differ-
ence between our approach and the corresponding MRI was
around 0.60 mm, the average absolute prostate-volume differ-
ence was less than 10%, and the average Dice volume overlap
was over 90%. The small surface and volume difference and
high volume overlap demonstrated the prostate volume con-
tour accuracy of our TRUS–CT-based registration method.
The Bland–Altman analysis51 is a method for statistical eval-
uation of agreement between two measurements. Figure 9
shows the systematic differences and estimate bias and limits
of agreement between the TRUS-based and MRI-based pros-
tate volumes. The relative bias in the TRUS-based volume
over the MRI-based volume was 1.7%, which may be due to
the prostate swelling from the implant needles.

3.B.3. Inter- and intraobserver reliability

Inter- and intraobserver reliability of the prostate contours
is demonstrated in Fig. 10. Among the manual segmentations
of the three observers, the mean prostate volume difference
was −1.13%±8.40%, 1.11%±4.70% and 0.31%±4.94% for
the TRUS, and 1.79%±6.16%, −0.85%±3.32%, and 1.12%
±3.16% for the MRI. Between the two measurements of
the same observer, the mean prostate volume difference was
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

F. 8. Comparison of the TRUS-based prostate segmentation and MR-defined prostate volume. (a1)–(a3) are the axial, coronal, and sagittal CT images;
(b1)–(b3) are the CT images with MRI-defined prostate volume; (c1)–(c3) are the CT images with our TRUS-based segmented prostate volume; (d1)–(d3) are
the volume overlap (yellow) between our TRUS-based segmented prostate volume (red) and MRI-based prostate volume (green).

−0.93%±3.19% for the TRUS, and −0.07%±3.56% for the
MRI. Figure 11 compares the automated segmented pros-
tate CT volumes based on the three observers’ segmenta-
tions and the same observer’s segmentations at two different
times. The mean prostate volume difference for our automated
CT segmentation was −1.95%±7.50%, 1.64%±4.51%, and
0.05%±4.85% based on the manual segmentations of three
observers, and −0.04%±3.30% based on the manual segmen-
tations of the same observer at two different times. The inter-
and intraobserver reliability study showed the consistency
in the manual segmentations, as well as in our automated
segmentations based on various sets of manual segmentations.

Figure 12 shows the volume difference between our auto-
mated segmentation volumes and the MR-defined prostate
volumes for three observers. There are no significant prostate
volume differences among these three observers (p-values
= 0.43, 0.32, and 0.28 between any two observers). Figure 13
shows the volume difference between our automated segmen-
tation volumes and the MR-defined prostate volumes for the

same observer. There is no significant volume difference be-
tween the two measurements (p-value= 0.37).

4. DISCUSSIONS

We proposed a novel CT prostate segmentation approach
through TRUS–CT deformable registration based on the
HDR catheter locations, which may significantly improve the
prostate contour accuracy in US-guided CT-based prostate
HDR treatment. This method was tested through a prostate-
phantom study and a pilot clinical study. In the prostate-
phantom study, the mean displacement of the three implanted
gold markers was less than 0.5 mm. In addition, the small
surface and volume difference of both the prostate and the
urethra further demonstrated that our approach not only cap-
tured the external deformation (prostate contour) but also
the internal deformation (urethra). In the clinical study, we
further demonstrated its clinical feasibility and validated the
segmentation accuracy with the patients’ MRIs.

T III. Prostate surface and volume comparison between our segmentation and the MR-defined prostate.

Patient P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 Mean ± STD

Mean surface distance (mm) 0.58 0.61 0.59 0.57 0.49 0.63 0.73 0.57 0.61 0.56 0.61 ± 0.06
Absolute volume difference (%) 7.13 7.75 6.97 6.71 6.51 6.23 7.35 8.19 8.04 8.35 7.28 ± 0.86
Dice volume overlap (%) 92.72 91.27 93.89 92.97 92.77 92.54 91.41 90.69 91.14 90.36 91.89 ± 1.19
TRUS prostate volume (CC) 41.51 42.03 43.14 39.02 38.19 44.11 58.87 29.21 38.68 28.94 40.37 ± 8.40
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F. 9. Bland–Altman analysis between our segmentation and the MR-
defined prostate. The lines indicate the mean difference (the middle line),
the mean difference + 2SD (the top line), and the mean difference − 2SD (the
bottom line).

The novelty of our approach is to integrate TRUS-based
prostate volume into CT-based prostate HDR treatment plan-
ning. To the best of our knowledge, this is the first study on CT
prostate segmentation with catheters based on the TRUS vol-
ume in HDR brachytherapy. This approach has three distinc-
tive strengths. (1) We utilize 3D TRUS images to provide accu-
rate prostate delineation and improve prostate contours for
CT-based HDR treatment planning. (2) The TRUS and plan-
ning CT images both are acquired post catheter insertions, so
these HDR catheters uniformly and symmetrically distributed
inside the prostate gland provide exceptional landmarks for the
later TRUS–CT registration to capture the nonrigid prostate

deformation between the TRUS and CT modalities. (3) Our
approach is clinically feasible and can be easily adapted into
the HDR procedure. The 3D TRUS data are acquired in the
operating room during a HDR procedure; and the patient scan
takes 1–3 min. Therefore no prior TRUS or additional patient
visits for imaging are required. In addition, these TRUS images
acquired during the HDR procedure provide the most authentic
prostate volume for HDR treatment planning as compared
with patients’ previous TRUS or MRI.

The robustness of the proposed prostate segmentation was
resulted from the accurate registration between the TRUS and
CT images. The registration between CT and US images of the
prostate is often very challenging, mainly because the anatom-
ical structures in the US images are embedded in a noisy and
low contrast environment with little distinctive information
regarding the material density measured in the CT images.
To overcome these difficulties, many approaches were pro-
posed to achieve prostate registration between CT and US. For
example, Fallavollita et al. reported an intensity-based regis-
tration method using TRUS and CT. Their registration error
was 0.54±0.11 mm in the phantom study and 2.86±1.26 mm
in the clinical study.52,53 Using a similar registration method,
Dehghan et al. reported 0.70±0.20 mm error in the implanted
seed locations for the phantom study and 1.80±0.90 mm regis-
tration error for the clinical study.52,53 Even et al. used 1–2
fiducial markers and 3–4 needle tips to perform a rigid regis-
tration between TRUS and cone-beam CT and their registra-
tion errors were within 3 mm for 85% of their patients.54 Yang
et al. presented a hybrid approach that simultaneously opti-
mized the similarities from the point-based registration and
the volume matching method. In a phantom study, a target

(a) (b)

(c) (d)

F. 10. Inter- and intraobserver reliability of the prostate contours. Among three observers, prostate volume comparison for TRUS (a) and MRI (b); between the
two measurements of the same observer, prostate volume comparison for TRUS (c) and MRI (d). Interobserver reliability was demonstrated by the agreement
between three observers’ prostate volumes. And intraobserver reliability was demonstrated by the agreement between the two sets of prostate volumes performed
by one observer.
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(a) (b)

F. 11. Prostate volume comparison of our automated segmentations based on the three observer’s segmentations (a) and the same observer’s segmentations at
two different times (b).

registration error of 3-voxels (1.5 mm) was reported.39 Firle
et al. used the segmented structures (e.g., prostate or urethra)
for US and CT prostate registration. Their prostate-phantom
study demonstrated 0.55–1.67 mm accuracy, but no clinical
study was reported.55 In this study, we proposed a catheter-
based registration method. In the HDR procedure, the catheters
were fixed with the needle template after the completion of
the catheter insertion in the operating room to ensure no cath-
eter movement or displacement relative to the prostate gland
throughout the brachytherapy procedure. In order to deliver a
uniform dose to the prostate and spare the surrounding normal
tissues such as the bladder and the rectum, the catheters were
evenly placed to cover the entire prostate. Such uniformly and
symmetrically distributed catheters provide exceptional land-
marks to capture the nonrigid prostate deformation between
the TRUS and CT images. Even though some catheters may
be curved due to the deflection, manual catheter segmenta-
tion can easily capture the curvatures. In addition, we chose
a B-splines transformation model, therefore, the translation of
a point is only determined by the area immediately surround-
ing the control points to ensure locally controlled transforma-
tion.56 Because the deformations caused by a transrectal probe
are spatially localized, this locally controlled transformation
could be advantageous for registering TRUS images and result
in smooth transformation fields. As a result, our registration
between the CT and US prostate images has achieved submil-
limeter accuracy in the phantom study, and 1.18±0.26 mm
accuracy in the clinical study.

F. 12. The volume difference between our automated segmentation vol-
umes and the MR-defined prostate volumes for three interobservers.

In recent years, many prostate segmentation methods ba-
sed on CT images have been proposed and these approaches
can be broadly classified into three main categories: model-
based, classification-based, or registration-based methods.26

Model-based methods16–21 construct the statistical models
based on the prostate shape or appearance to guide segmen-
tation in a new set of images. Feng et al. presented a defor-
mable-model-based segmentation method by using both the
shape and appearance information learned from the previous
images to guide automatic segmentation of the new CT im-
ages.17 Chowdhury et al. proposed a linked statistical shape
model that links the shape variations of a structure of inter-
est across MR and CT imaging modalities to concurrently
segment the prostate on the MRI and CT images.21 In the
classification-based methods,21–27 the segmentation process
is formulated as a classification problem, where classifiers
are trained from the training images and based on which
voxel-wise classification is performed for each voxel in the
new image to determine whether it belongs to the prostate or
the nonprostate region. Li et al. presented an online-learning
and patient-specific classification method based on the loca-
tion-adaptive image context to achieve the segmentation of
the prostate in CT images.22 In Liao’s paper, a patch-based
representation in the discriminative feature space with logis-
tic sparse LASSO was used as the anatomical signature to
deal with the low contrast problem in the prostate CT im-
ages, and a multiatlases label fusion method formulated un-
der sparse representation framework was designed to segment

F. 13. The volume difference between our automated segmentation vol-
umes and the MR-defined prostate volumes for the same intraobserver.
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the prostate.26 Finally, registration-based methods28,29 explic-
itly estimate the deformation field from the planning image
to the treatment image so that the segmented prostate in
the planning image can be warped to the treatment image
space to localize the prostate in the treatment images. Davis
et al.’s paper exemplifies the registration method by combin-
ing a large deformation image registration with a bowel gas
segmentation and deflation algorithm for adaptive radiation
therapy of the prostate.28

We compared our method with six previous prostate CT
segmentation methods proposed by Chen et al.,16 Feng et al.,17

Li et al.,22 Liao et al.,23,26 and Davis et al.28 The mean Dice
volume overlap of these 6 methods ranged between 82.0% and
90.9%. In contrast, our approach integrated accurate TRUS
prostate volume into the CT images, and the average Dice vol-
ume overlap between our segmentation and the MRI-based
prostate volume was 91.89%. The volume discrepancies
mostly occurred at the base and apex of the prostate. The pros-
tate boundary on the MRI is sometimes not clear around the
prostate base and apex. Therefore, the volume discrepancies
may be related to the MRI-based manual segmentation error.
Of course, many other factors, such as patient position, rectal
probe, and catheter-induced prostate swelling, could also con-
tribute to the discrepancies.

For future studies, we will either decrease the number of
catheters used in the deformable registration or incorporate
automatic catheter recognition in TRUS images to speed up
registration and segmentation. We will also introduce auto-
matic segmentation methods for TRUS prostate images to
eliminate physicians’ manual contours.57–64 Meanwhile, we
are conducting a clinical study with a larger cohort to further
investigate treatment outcomes (e.g., cancer control and side
effects) in the clinic.

5. CONCLUSION

Accurate segmentation of the prostate volume in the treat-
ment planning CT is a key step to the success of CT-based
HDR prostate brachytherapy. We have developed a novel
segmentation approach to improve prostate contours utiliz-
ing intraoperative TRUS-based prostate volume in the treat-
ment planning. In a preliminary study of ten patients, we
demonstrated its clinical feasibility and validated the accu-
racy of our segmentation method with MRI-defined prostate
volumes. Our multimodality technology, which incorporates
accurate TRUS prostate volume, and fits efficiently with the
HDR brachytherapy workflow, could improve prostate con-
tours in planning CT, enables accurate dose planning and
delivery, and potentially enhance the prostate HDR treatment
outcomes.
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Summary

Parotid gland volume reduc-
tion has been associated with
decreased saliva production
and xerostomia (dry mouth)
in head and neck cancer ra-
diation therapy. In this study,
an automated parotid seg-
mentation method, based on
atlas registration and ma-
chine learning, was devel-
oped to accurately quantify
radiation-induced parotid
gland change, using pre- and
post-treatment magnetic
resonance imaging. This
automated segmentation tool
will be valuable to carry out

Purpose: To develop an automated magnetic resonance imaging (MRI) parotid seg-
mentation method to monitor radiation-induced parotid gland changes in patients after
head and neck radiation therapy (RT).
Methods and Materials: The proposed method combines the atlas registration
method, which captures the global variation of anatomy, with a machine learning
technology, which captures the local statistical features, to automatically segment
the parotid glands from the MRIs. The segmentation method consists of 3 major steps.
First, an atlas (pre-RT MRI and manually contoured parotid gland mask) is built for
each patient. A hybrid deformable image registration is used to map the pre-RT MRI
to the post-RT MRI, and the transformation is applied to the pre-RT parotid volume.
Second, the kernel support vector machine (SVM) is trained with the subject-specific
atlas pair consisting of multiple features (intensity, gradient, and others) from the
aligned pre-RT MRI and the transformed parotid volume. Third, the well-trained
kernel SVM is used to differentiate the parotid from surrounding tissues in the
post-RT MRIs by statistically matching multiple texture features. A longitudinal study
of 15 patients undergoing head and neck RT was conducted: baseline MRI was ac-
quired prior to RT, and the post-RT MRIs were acquired at 3-, 6-, and 12-month
follow-up examinations. The resulting segmentations were compared with the physi-
cians’ manual contours.
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longitudinal or large-scale
clinical studies to understand
toxicity of the parotid gland
and treat radiation-induced
xerostomia.

Results: Successful parotid segmentation was achieved for all 15 patients (42 post-RT
MRIs). The average percentage of volume differences between the automated seg-
mentations and those of the physicians’ manual contours were 7.98% for the left pa-
rotid and 8.12% for the right parotid. The average volume overlap was 91.1% � 1.6%
for the left parotid and 90.5% � 2.4% for the right parotid. The parotid gland volume
reduction at follow-up was 25% at 3 months, 27% at 6 months, and 16% at 12 months.
Conclusions: We have validated our automated parotid segmentation algorithm in a
longitudinal study. This segmentation method may be useful in future studies to
address radiation-induced xerostomia in head and neck radiation therapy.
� 2014 Elsevier Inc.

Introduction

Xerostomia (dry mouth) is a common debilitating adverse
effect in patients who have received radiation therapy (RT)
for head and neck malignancies (1-8). Severe xerostomia is
associated with oral discomfort, increased rates of dental
caries, oral infection, and difficulty in speaking and swal-
lowing (6, 8). Several studies have shown that changes in
parotid gland morphology (eg volume reduction) are
associated with decreased saliva production and xerostomia
(1-8). Nevertheless, longitudinal imaging studies with
larger cohorts are needed to better understand this debili-
tating side effect, monitor its progression, and evaluate its
response to interventions such as partial parotid sparing
(available with intensity modulated RT).

Longitudinal imaging studies of radiation-induced parotid
toxicity require an accurate, reliable, and validated imaging
method to segment the parotid glands. In the clinic, manual
segmentation remains the gold standard for parotid delin-
eation with magnetic resonance images (MRI). However, it
is impractical to apply the manual segmentation method to
longitudinal or large-scale studies due to time constraints. In
addition, manual segmentations are also prone to rater drift
and bias. A number of CT-based parotid gland segmentation
methods have been investigated (9-16), yet few studies have
been conducted using MRIs. Therefore, the goal of this
study was to develop an automated, reliable, and robust
segmentation method to monitor radiation-induced parotid
gland changes by using multiple MRIs.

We proposed combining atlas registration, which cap-
tures global variations of anatomy, with machine learning,
which captures local statistical features, using kernel sup-
port vector machine (SVM), to automatically segment the
parotid glands in MR images. This method uses the base-
line parotid contours as the atlas and automates the parotid
segmentation for post-RT MRIs. Our technology was tested
in a longitudinal study of 15 head and neck patients with
1-year follow-up examinations.

Methods and Materials

Our segmentation method consisted of 3 major steps: (1)
atlas-based registration; (2) feature SVM training; and (3)

parotid gland volume segmentation using trained feature
SVM.

Step 1: Atlas-based registration

A hybrid deformable image registration combining a
normalized mutual information (NMI) metric with a
normalized sum-of-squared-differences (NSSD) metric was
used to map the pre-RT MR to the post-RT MRI. The
transformation was then applied to the parotid gland binary
volume manually contoured from pre-RT MR images
(Fig. 1).

The term “atlas” in the context of this work is defined as
the pairing of structural MRI volumes with their corre-
sponding segmented parotid gland binary volumes. We
built a subject-specific atlas for each patient, which
included the patient’s baseline (pre-RT) MR images and the
manually contoured parotid binary volume. The advantage
of using the pre-RT MR as the basis for the SVM approach
is that the pre-RT MRI often shows anatomy structure that
is clearer than that of post-RT MRI, where radiation dam-
age may occur. The MR parotid segmentations at various
follow-up times for a specific patient were based on this
atlas. Using this patient’s post-RT MR scan obtained at
follow-up, we aligned the pre-RT MRI to the post-RT MRI,
using deformable registration (detailed in the following
section) and applied the transformation to the parotid gland
binary volume of the pre-RT MRI.

In order to handle the local intensity contrast induced by
RT (17) and inhomogeneity changes associated with
various MR scans (18, 19), we applied a hybrid image
matching metric (10), which is a combination of NMI and
NSSD metrics.

EðI;JÞZa,NSSDðI; JÞ � b,NMIðI;JÞ

Za,
1

N

X
x

����I
�
x
�
� mIðxÞ

sIðxÞ
�
J
�
x
�
� mJðxÞ

sJðxÞ

����
�b,

HðIðxÞÞ þHðJðxÞÞ
HðIðxÞ;JðxÞÞ

ð1Þ

where Iand J denote the pre-RT and follow-up images;
HðIÞ and HðJÞ denote the marginal entropies I andJ; and
HðI; JÞ denotes their joint entropy, which is calculated from
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the joint histogram of I and J. a and b are the relative
weighting of the two termsaZbZ0:5. mIZGs � I denotes
the local intensity mean, and sIZGs)ðI � mIÞ2 denotes the
local intensity variation of image, I. The same denotations
are for the target image J.Gs, which denotes a Gaussian
filter with the kernel size s (the kernel size s was chosen to
be 2-3 times the image voxel size). The hybrid matching
metric provides a better image alignment than the NSSD or
NMI because they are sensitive only to edges or local
image contrast, respectively (10).

After this atlas registration, the registered baseline (pre-
RT) MRI had similar global anatomy information as the
follow-up MRI. However, the size and intensity of the pa-
rotid glands in MRI often change over time after RT (17).
In order to capture local changes (intensity contrast varia-
tion) of parotid glands and improve the segmentation
accuracy, we used this pair with large similarity as the
follow-up MRI to train the kernel-based SVM.

Step 2: Support vector machine training

Multiple operators (gradient, enhanced Sobel and Gabor
wavelets) were used to extract the local features from
registered baseline MRI, and multiple different features were
extracted to aid in the kernel-based SVM classification
process (Fig. 2). A total of 41 features, some sensitive to the
boundary and some sensitive to the microstructures, were
made up of the original intensity feature, gradient features,
enhanced Sobel features, and Gabor features. Four gradient
and Sobel operators were convolved with aligned pre-RT
MR images to detect horizontal, vertical, and diagonal
edges and strength of edges (20). We also obtained a total of
32 Gabor features on 4 levels and 4 rotations for the original

intensity image. Gabor wavelet was used to capture image
features in multiple scales and multiple orientations (21, 22).
The mother function of the 2-dimensional Gabor wavelet is.
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with the corresponding Fourier transformation as.
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where suZ1=ð2psxÞand snZ1=ð2psyÞ and sxand
sycharacterize the spatial extent and frequency bandwidth
of the Gabor wavelet, and W is a shifting parameter along
theu axis in the frequency domain. The Gabor wavelet can
be obtained by dilation and rotation of the mother function.
Use of the Gabor wavelet offers at least 2 advantages for
parotid gland segmentation. First, with the Gaussian factor
in the Gabor wavelet, the noise in the MRI (19) can be
smoothed or removed. Second, the multiscale and multi-
orientation structure of the Gabor wavelet enables the ex-
tractions of edge direction as well as edge strength. The
Gabor wavelet provides rich edge maps that correspond to a
variety of directions, rather than a single “maximum edge
intensity” map.

SVM is a popular, supervised machine learning model
with associated statistical learning algorithms that analyze
data and recognize patterns for classification and regression
analysis (23). The idea behind SVMs is to map the original
data points from the input space to a high-dimension (hy-
perplane) feature space such that the classification problem
becomes simpler in the hyperplane space. The training
phase of SVMs looks for a linear, optimal separating
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Fig. 1. Flow chart of atlas registration (Step 1).
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hyperplane as the maximum margin classifier with respect
to the training data (24). Because the training data are not
linearly separable, kernel-based SVM methods are used to
classify these features. Kernel-based SVM methods map
data from an original input feature space to a kernel feature
space of higher dimensionality and then solve a linear
problem in that space. In this study, kernel-based SVM was
used to identify the features of parotid gland tissue.
Although these features may vary greatly among various
follow-up MR scans, the kernel-based SVM nonlinearly
classifies subjects by extracting different features. The
method defines a hyperplane to classify the subjects by
minimizing the following function.

1

2

�
wTwþ b2

��C
XN
iZ1

xi ð4Þ

subject to.

yiðwTkðxiÞ þ bÞ � 1� xi; xi � 0 and i˛N ð5Þ

where C is a penalty parameter and xi is a slack variable to
measure the deviation of training samples. w is the vector of
coefficients, and b is a constant offset. To find the optimal
input parameter values, the grid search method is used. The
index i labels the N training cases. yi˛� 1 is the class
label, and xi is the independent variable. The kernel k is
used to transform data from the input to the feature space.
There are a number of kernels that can be used in SVM
models. In our implementation, radial basis function (RBF)
was used as follows

k
�
xi;xj

�
Zexp

�� g
��xi � xj

��2�; gZ1
��

2s2
� ð6Þ

We used the registered pre-RT MRI with multiple fea-
tures (gradient, Sobel, and Gabor features), as well as the
transformed parotid binary volume, to train the RBF kernel-
based SVM.

Step 3: Volume segmentation

In order to segment the parotid glands, we performed the same
feature extraction process for the follow-upMRIs (Fig. 3). The
follow-up MR images and their multiple features (gradient,
Sobel, and Gabor features) were the input of trained kernel-
based SVM, and the trained SVM adaptively labeled the pa-
rotid tissue based on its texture and location. The output of
trained SVM is a binary image (volume) consisting of many
“0” (nonparotid tissues) and “1” (parotid tissue) points. The
3D parotid segmentationwas obtained from the classification-
based binary volume using the following steps: (1) the pre-RT
segmented parotid volume plus 10-mmmargin was defined as
the volume of interest (VOI); (2) the VOI was applied to the
binary volume to set the volume outside the VOI to 0; (3) a 3D
filter was applied to smooth the binary volume; (4) a 0.5
threshold was applied to the filtered volume; and (5) 3D
morphology operation was used to eliminate the holes or
disconnections in the parotid glands.

Reliability evaluation of the segmentation
algorithm

The automatic parotid segmentation results were compared
with the gold standards of physicians’ manual contours. A
common evaluation measure for a segmentation method is the
Dice overlap ratio. TheDice overlap ratio is defined as follows.

Dice

	
Vol1;Vol2



Z

2jVol1XVol2j
jVol1j þ jVol2j ð7Þ

where Vol1 represents the voxels of the parotid gland
segmented by the automated algorithm, andVol2 represent the
voxels of the corresponding manual segmentation of the
experts.
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Fig. 2. Flow chart of SVM training (Step 2). SVM Z support vector machine.
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Results

Subjects

We conducted a longitudinal study of 15 patients receiving
radiation therapy for head and neck malignancies, such as
laryngeal and oropharyngeal cancers. This MR imaging
study was approved by the Ethics Committee of our uni-
versity. The 15 patients (10 men and 5 women) ranged in
age from 40 to 65 years old (mean, 49.5 � 6.6 years old).
The median radiation dose to the left parotid gland was
50.3 Gy (43.1-61.1 Gy) and 51.9 Gy (38.5-63.2 Gy) to the
right parotid gland. All patients received a baseline MR
scan prior to RT and an additional 3 MR scans post-RT at 3-
and 6-month and 1-year follow-up examinations. Among
the 15 patients, 2 patients missed the 6-month follow-up
scan, and 1 patient missed the 1-year follow-up scan. A
total of 57 MR scans were included in this study.

MRI scan

AllMRI examinations were performedwith a dedicated head
and neck coil, with a Signa model HDxt 1.5-T machine (GE
Healthcare). T1-and T2-weighted MR sequences were ob-
tained after intravenous injection of contrast material
(gadopentetate dimeglumine). TheQ7 parameters for the T2-
weighted sequence were TR/TE/ETL Z 3000 w 4000/90
w 120/8w16ms, 3.0-mm slice thickness, 256� 256matrix,
maximum voxel resolution of 0.8 � 0.8 � 3.0 mm3.

Interobserver reliability study

The interobserver reliability study showed consistency in
physicians’ manual baseline contours, which were used as

the ground truth, as well as in the automatic parotid seg-
mentations, using the 2 different sets of baseline contours.

Parotid gland segmentation: a case report

Figure 4 shows the case of a 41-year-old patient who
received intensity modulated RT for laryngeal cancer. The
mean dose to the right parotid was 55.26 Gy, and the mean
dose to the left parotid was 53.05 Gy. Prior Q8to RT, the
baseline volume of the right parotid gland was 28.14 cc and
26.98 cc of the left parotid. Post-RT, the right parotid gland
volumes obtained from the automatic segmentation
compared to those from manual segmentation (Dice volume
overlap) were 21.55 versus 22.82 cc (89.9%), respectively, at
3-month follow-up; 20.86 versus 22.26 cc (91.3%), respec-
tively, at 6-month follow-up; and 23.35 versus 25.29 cc
(89.6%), respectively, at 1-year follow-up. Similarly, the left
parotid gland volumes obtained from the automatic
compared to those of the manual segmentations were 19.90
versus 21.14 cc (91.8%), respectively, at 3 months; 19.71
versus 18.93 cc (90.4%), respectively, at 6 months; and 22.96
versus 24.77 cc (90.1%), respectively, at 1-year follow-up.
Differences between automatically segmented parotid
gland volumes and the physicians’ manual contours ranged
between �8.3% and 7.7% at the 3 follow-up time points.

Parotid gland segmentation: first follow-up study
for all patients

Fifteen pre-RT MR image volumes corresponding to 15
patients were first manually contoured by an experienced
radiation oncologist (NW) to obtain respective left and
right parotid gland binary volumes (masks). We built 15
atlases (pre-RT T2-weighted MRI volume plus
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Fig. 3. Flow chart of parotid volume segmentation (Step 3).
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corresponding parotid gland binary volume comprised an
atlas for each patient) for 15 patients in our longitudinal
study.

We compared the automatic parotid gland segmentations
with the physicians’ manual contours for the 42 follow-up
MRIs. Figure 5 shows the Dice volume overlap, maximum,
and mean surface distance comparisons of the first follow-
up time point for the 15 patients. The averaged volumes
obtained from the automatic segmentations compared to the
manual contours were 20.56 � 7.63 versus 22.23 � 8.39 cc,
respectively, for the left parotid glands; and 21.31 � 6.16
versus 23.01 � 7.87 cc, respectively, for the right ones. The
averaged Dice volume overlap was 91.1 � 1.6% (left) and
90.5 � 2.4% (right); the averaged absolute volume differ-
ence was 7.98% (left) and 8.12% (right); the averaged
maximum surface distance was 3.46 � 1.22 (left) and
3.79 � 1.47 mm (right); and the averaged surface distance
was 0.29 � 0.11 mm (left) and 0.32 � 0.17 mm (right).

Parotid gland segmentation: all follow-up studies
for all patients

For the longitudinal study, the pre-RT parotid gland volume
was used as the reference with which to observe the parotid
gland volume reduction in all patients at various follow-up
times. Figure 6 shows a comparison of the average per-
centage of volume reduction in the 15 patients, obtained by
automatic and manual segmentations. For the manual and
automatic segmentations, the percentage of parotid volume
reduction was 24.9% � 8.2% and 26.1% � 8.4%, respec-
tively, at 3 months post-RT (PZ.42); 27.4% � 7.9% and
27.9% � 9.3%, respectively, at 6 months post-RT (PZ.83);
and 16.1% � 15.6% and 17.3% � 15.2%, respectively, at
1 year post-RT (PZ.55). There were no significant

differences (PZ.37) between parotid gland volume
reductions at 3 and 6 months post-RT, whereas there were
significant difference in volume reductions between the
3-month and 1-year follow-up examinations (PZ.019) and
the 6-month and 1-year follow-up examinations (PZ.014).

Discussion

We proposed an automatic MR parotid gland segmentation
algorithm with which to study RT-induced parotid volume
changes in head and neck cancer RT. In this algorithm, an
atlas registration combined the NMI with the NSSD and
was used to register the pre-RT MRI to the post-RT MRI,
and multiple features were extracted from the registered
pre-RT MRI to train the kernel SVM. The trained kernel
SVM was subsequently used to perform the segmentation
for the post-RT MRI. In this automatic segmentation, the
atlas registration was used to capture the radiation-induced
global anatomical variation of the parotid glands, whereas
the trained SVM with multiple features was used to capture
the local statistical structural variation. Automatic seg-
mentation results were compared with physicians’ manual
contours (gold standard). The average Dice volume over-
laps between our segmentations and the manual contours of
bilateral parotid glands were more than 90%. Compared to
the pre-RT parotid gland volume, the percentage of parotid
volume reduction was 25% at 3 months post-RT, 27% at
6 months post-RT, and 16% at 1 year post-RT.

Parotid gland volume reduction was observed in all 15
patients after RT, which is consistent with previous studies
(6-8, 17, 25, 26). Wu et al (8) demonstrated that the post-
RT parotid glands had an average of 35% volume reduc-
tion compared with normal glands. Vasquez et al (25)
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Fig. 4. An example of parotid gland volume reduction post-RT. (Top row) MR images of the pre-RT parotid glands (a) and
at 3-month (b), 6-month (c), and 1-year (d) follow-up examinations. The automatic segmentation is shown in red, and the
manual contour is shown in yellow. (Bottom row) 3D visualization and comparison between automatic (red) and manual
(blue) parotid gland segmentation 3 months post-RT. A color version of the figure is available at www.redjournal.org.
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observed that the average parotid volume reduction was
14% to 17% at the end of the treatment. In a clinical study
of 82 patients, Wang et al (6) indicated the average parotid
gland volume loss was 20.1% after 3 weeks of RT; 26.93%
upon completing RT; and 27.21% at 2 months post-RT.

Histologically, normal parotid glands consist entirely of
serous cells with densely packed translucent secretory
granules (3, 27). Radiation doses of more than 26 Gy can
cause a significant loss of serous acini and reduce the
volume of parotid glands (6) during the treatment and at the
early follow-up examinations after RT. The percentage of
parotid gland volume reduction produced big difference
among those studies, which may be caused by (1) different
mean doses to parotid glands correlated with parotid
damage; and (2) different follow-up times. In the current

study, no significant differences in gland volumes were
observed between the 3- and 6-month follow-up examina-
tions, which is consistent with reports by Wang et al (6) and
Nomayr et al (17). The parotid volume increase between 6-
month and 1-year follow-up examinations may indicate the
parotid recovery after radiation therapy (27).

Due to the complexity of head and neck MRI, most MR-
based segmentation methods rely on single or multiple
atlases. Single Q9- or multiple-atlas-based segmentation
methods include 2 key steps: (1) how to register single or
multiple atlases to the images that need to be segmented;
and (2) how to refine a segmented boundary or surface for
the single-atlas-based method and how to combine or select
the multiple aligned atlases for the multi-atlas-based
method. Therefore, a good atlas-based segmentation

40%

60%

80%

100%

P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 P15

D
ic

e
 V

o
lu

m
e
 O

v
e
rl

a
p
 

Patient

Left

Right

A

B

C

-0.4

-0.1

0.2

0.5

0.8

1.1

1.4

P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 P15

M
e
a
n
 S

u
rf

a
ce

 D
is

ta
n
ce

 (
m

m
) 

 

Patient

Left

Right

0.0

2.0

4.0

6.0

8.0

P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 P15

M
a
x
 S

u
rf

a
ce

 D
is

ta
n
ce

 (
m

m
)

Patient

Left

Right

w
e
b
4
C
=
F
P
O

Fig. 5. Dice volume overlap (a), maximum (b) and mean surface distance (c) comparisons of left and right parotid glands
for 15 patients at the first follow-up time between the automatic and manual segmentation.
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system requires not only a robust registration algorithm but
also an effective scheme to select the optimal atlas tem-
plates that are close to the segmenting image. In our single-
atlas-based method, a hybrid deformable registration
algorithm based on the NMI and NSSD was used to register
the atlas (pre-RT MRI) to the post-RT MR image. This
algorithm could capture the variations of anatomy and cope
well with the local image contrast changes associated with
radiation-induced tissue damage. A kernel SVM was used
to combine multiple features extracted from an aligned
subject-specific atlas. Our kernel SVM mapped the feature
data from the aligned atlas space to the kernel feature space
of higher dimensionality and then solved a linear problem
separating the parotid and nonparotid tissues. Multiple
features from subject-specific atlas pairs were used to train
the kernel SVM, and the well-trained SVM based on RBF
kernel could then robustly differentiate the parotid tissue
from the surrounding tissues by statistically matching
multiple texture features.

Future areas of study include speeding up the SVM
training and segmentation by testing the sensitivity of
multiple features and decreasing the number of feature
numbers. Meanwhile, we are conducting a clinical longi-
tudinal study with a larger cohort to further investigate the
relationship between parotid volume changes and parotid
gland function and validate if volume changes could predict
xerostomia.

Conclusions

Studies have shown that volume changes of the parotid
glands are correlated with the severity of radiation damage
and may serve as a predictor for xerostomia. To better
monitor radiation-induced volume change of the parotid
gland and fully understand xerostomia in head and neck
cancer radiation therapy, we developed a novel automatic
MR parotid gland segmentation algorithm based on atlas
registration and machine learning. We also demonstrated
the feasibility and accuracy of our automatic segmentation
algorithm in a clinical study. This segmentation method

may be useful as we try to address xerostomia in patients
after radiation therapy for head and neck malignancies. Q10
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A B S T R A C T

Introduction. Vascular comorbidities (VC) (hypertension, diabetes, and hyperlipidemia) are known factors related to
erectile dysfunction (ED) in men. However, no data are yet available for the effects of VC on ED incidence after
prostate cancer radiotherapy (XRT).
Aim. To investigate the influence of VC on post-XRT ED incidence and to further characterize ED incidence by
racial groups.
Main Outcome Measures. ED incidence.
Methods. We reviewed 732 charts of patients (267 Caucasian and 465 African American [AA]) who received prostate
XRT (external beam radiotherapy and/or brachytherapy) with or without hormone therapy between 1999 and 2010.
The number of pre-XRT VC (0, 1, 2, or 3) was determined by medical history and medication list. ED (defined by
use of erectile aids or by documentation of moderate or high sexual dysfunction on patient history) was determined
pre-XRT as well as 1, 2, and 4 years post-XRT.
Results. ED incidence progressively increased from 22% pre-XRT to 58% 4 years post-XRT (P < 0.01). Addition-
ally, ED incidence significantly increased with number of VC—4-year incidence between patients with 1 vs. 0
(P = 0.02), 2 vs. 0 (P < 0.01), 3 vs. 0 (P < 0.01), 3 vs. 1 (P < 0.01), and 3 vs. 2 (P = 0.04) VC (2 vs. 1 VC was
nonsignificant). Compared with the Caucasian patients, ED incidences were slightly higher for the AA group with
0, 1, 2, and 3 comorbidities at 4 years follow-up (but statistically nonsignificant).
Conclusions. The number of VCs have a significant effect on development of post-XRT ED. Pre- and post-XRT ED
appear to be independent of race when number of VCs are considered. Our results can be used to guide physicians
in counseling patients on the incidence of ED by number of VC and as preliminary data for prospective efforts aimed
at reducing post-XRT ED. Wang Y, Liu T, Rossi PJ, Watkins-Bruner D, Hsiao W, Cooper S, Yang X, and Jani
AB. Influence of vascular comorbidities and race on erectile dysfunction after prostate cancer radiotherapy.
J Sex Med 2013;10:2108–2114.
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Introduction

W ith advances in diagnosis and treatment,
over 2.35 million American men have

currently survived prostate cancer [1]. As such,
reduction of treatment-related side effects is
increasingly important. Erectile dysfunction (ED)
is a common complication of prostate cancer

radiotherapy (XRT) [2,3]. Depending on the
population studied, up to 50% of men receiving
radiotherapy for prostate cancer will suffer post-
XRT ED [4]. Clearly, radiation-induced ED is a
clinical problem of enormous magnitude.

The causes of radiation-induced ED are not
fully understood, with several different proposed
factors and mechanisms, including neurogenic,
vascular, and psychogenic [5]. It has been proposed
that dose-related vascular damage to the neurovas-
cular bundles may be a critical causative factor [3].
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Several studies have been conducted to understand
the radiation dose to penile structures (body and
bulb) and radiation-induced ED [6,7].

Hypertension (HTN), diabetes (DM), and
hyperlipidemia (HL) are the three most common
vascular comorbidities (VC) associated with ED
in the general population, most likely due to the
common mechanism of vasculogenic damage [8].
However, the influence of these VC on post-
XRT ED is poorly understood. The prevalence
of HTN and DM is higher in African Americans
(AAs) than Caucasians, and this has been found
to translate to an overall higher age-matched
prevalence of ED in AA men [9]; the higher
prevalence of VC has in some cases served as an
obstacle to enrollment of AA men on quality of
life trials.

While vascular disease is clearly related to ED,
little is known about the effect of XRT on ED, and
no published reports to date exist on the effect of
vascular disease on post-XRT ED. Therefore, we
undertook this study to understand the impact of
VC on post-XRT ED and to further characterize
pre- and post-XRT ED by race.

Materials and Methods

After obtaining institutional review board
approval, the charts of consecutive prostate
cancer patients treated with radiation therapy
at two affiliated hospitals in our department
between 1999 and 2010 were reviewed. Patients
with stage IV disease, patients who had radical
prostatectomy, and patients with follow-up data
less than 1 year were excluded. The remaining
732 patients (267 Caucasians and 465 AAs) com-
prise the study population. Our standard clinical
practice is to have providers evaluate ED at each
visit with questions from the provider. Patients
were asked if they were having problems with
obtaining erections adequate enough for sexual
activity and were charted on a three-tiered
system for having (i) no or minimal sexual dys-
function, (ii) moderate sexual dysfunction, or (iii)
severe sexual dysfunction. Patients reporting
moderate or severe problems with erectile func-
tion were referred for urologic evaluation and
treatment of ED.

The medical records were used to abstract
demographic, disease, and treatment information.
Patient’s VC (HTN, DM, and HL) status was
determined by medications and past medical
history recorded in patient chart during patients’
initial consultation visit. Sexual function status

was also determined by medical record review.
For our study, ED was defined as a dichotomous
event occurring if (i) moderate or severe sexual
dysfunction was documented in patient chart on
physician-obtained history or (ii) if patients were
using or prescribed any erectile aids that included
phosphodiesterase type 5 inhibitors, transurethral
prostaglandin, intracavernosal injection therapy,
or vacuum erection device [10]. Of note, patients
who reported diminished erections but were still
firm enough for sexual activity were considered
as potent. Sexual function status was determined
at four specific time points: pre-XRT, and 1 year,
2 years, and 4 years post-XRT. The median
follow-up for all patients is 33.6 months.
Intention-to-treat analysis was applied; for
those patients lost to follow-up, their sexual
function status was determined at the last
appointment.

External beam radiotherapy (EBRT) was per-
formed using three-dimensional conformal or
intensity-modulated technique. If EBRT was
given alone (i.e., without brachytherapy [BT]), the
total dose to the prostate was 67.0 to 81.0 Gy
delivered in 1.8 to 2.0 Gy fractions. Planning
target volume (PTV) included the prostate,
seminal vesicles, and in some cases pelvic lymph
nodes to define PTV1; PTV2 consisted of prostate
alone. BT was a component of XRT for 190
patients. When BT was combined with EBRT, and
dose of EBRT was 45.0 Gy delivered in 25 frac-
tions to the prostate plus seminal vesicles; EBRT
PTV margins in all cases were typically 0.8–1.0 cm
circumferentially with a smaller margin (0.6–
0.8 cm) posteriorly. The BT dose was 100–109 Gy
when combined with EBRT and 125–145 Gy
when given alone.

Statistical analyses were performed using SAS
(version 9.3, SAS Institute Inc., Cary, NC, USA)
and Minitab (version 16, Minitab Inc., State
College, PA, USA). The age difference between
Caucasians and AAs was tested using the Student’s
t-test. The chi-square independence test was
applied to determine the difference in demo-
graphic, disease, and treatment factors based on
race. In order to determine the impact of comor-
bidity on radiation-induced ED, the two sample
proportion test was performed to assess the signifi-
cance of ED differences between patients with dif-
ferent number of VC. A logistic regression model
was used to analyze the effect of race on radiation-
induced ED by number of VC. All P values
reported are two-tailed, with P < 0.05 considered
statistically significant.
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Results

Mean follow-up for the entire cohort was 33.6
months (Caucasian: 38.4 months, AA: 30.0
months). The clinical characteristics of the study
population are shown in Table 1. As shown, AA
and Caucasian patients were generally balanced
with respect to Gleason score, radiation treatment,
and use of hormone therapy. However, the AA
patients were on average approximately 5 years
younger, had a higher pretreatment prostate-
specific antigen (PSA), had a lower T-stage, and
had higher incidence of HTN (80% vs. 71%,
P < 0.01) and DM (24% vs. 14%, P < 0.01) than
Caucasian patients. However, the HL incidence
for AA patients was lower than for Caucasian
patients (36% vs. 44%, P < 0.01). Notably, the
HTN, DM, and HL incidence differences
between two racial groups identified in our study
was consistent with reported results in general
population [11].

In order to investigate the impact of VC on ED
incidence post radiotherapy, we identified each
patient’s HTN, DM, and HL status prior to radia-
tion and stratified them into four subgroups based
on the number of VC (0, 1, 2, and 3). Table 2
displays the number/percentage of patients by

number of VC across race groups. Overall there
was a similar incidence of patients having 0, 1, or 2
VC, with the AA group having a higher percentage
of patients with 3 VC.

Table 3a displays the incidence of ED as a
function of number of VC and time. As shown,
after radiotherapy, ED incidence increased in two
manners: First, compared with the baseline levels
(pre-XRT), ED incidence progressively increased
from 1 year to 4 years post-XRT when patients
had the same number of VC. Second, post-XRT

Table 1 Patient characteristics

Caucasian
(total: 267)

AA
(total: 465)

P value
(t-test or
chi-square)

Comorbidity
HTN* 190 (71%) 372 (80%) <0.01
DM* 37 (14%) 112 (24%) <0.01
HL* 177 (44%) 167 (36%) <0.01

Years (mean) 68.6 � 8.05 63.4 � 8.10 <0.01
Stage

I 147 (55%) 324 (69%) <0.01
II 102 (38%) 107 (23%)
III 15 (6%) 31 (7%)
Unknown 3 (1%) 3 (1%)

PSA (ng/ml)
<10 191 (74%) 256 (55%) <0.01
�10 76 (26%) 209 (45%)

Gleason score
Average 7.0 � 0.88 7.0 � 0.87 0.91
4–6 80 (30%) 147 (32%)
7 130 (49%) 228 (49%)
8–10 52 (21%) 88 (19%)
Unknown 1 (<1%) 2 (<1%)

Radiation treatment
EBRT alone 192 (72%) 350 (75%) 0.10
BT � EBRT 79 (28%) 116 (25%)

Hormone therapy
LHRH alone 78 (29%) 141 (30%) 0.35
LHRH/Antiandrogen 40 (15%) 100 (22%)
Antiandrogen alone 3 (1%) 2 (<1%)
None 146 (55%) 222 (48%)

*Patient may or may not have other comorbidities.

Table 2 Prevalence of vascular comorbidities for
Caucasian and AA prostate cancer patients

Caucasian
(total: 267)

AA
(total: 465) P value*

Patients without comorbidity
None 50 (19%) 67 (14%) 0.16

Patients with one comorbidity
HTN 82 (31%) 179 (39%) 0.03
DM 2 (1%) 7 (2%) 0.33
HL 25 (10%) 15 (3%) <0.01
Total 109 (41%) 201 (43%) 0.53

Patients with two comorbidities
HTN and DM 16 (6%) 45 (10%) 0.06
HTN and HL 73 (27%) 92 (20%) 0.02
DM and HL 1 (<1%) 5 (1%) N/A
Total 90 (34%) 142 (31%) 0.38

Patients with three comorbidities
HTN, DM, and HL 18 (7%) 55 (12%) 0.02

*Obtained using t-test.

Table 3 Erectile dysfunction incidences by vascular
comorbidities (VC)

a. ED incidence for whole group by VC and time point

Number
of VCs

Pre-XRT
ED (%)

Post-XRT ED (%)

1 year 2 years 4 years

0 15 39 41 44
1 19 48 55 56
2 26 55 59 63
3 35 71 73 75
Overall 22 52 56 58

b. Pairwise comparisons of increase in ED incidence by
number of VC

VC

Pre-XRT 4 years post-XRT

Increase in ED
incidence (%) P value*

Increase in ED
incidence (%) P value*

1 vs. 0 4 0.41 12 0.02
2 vs. 1 7 0.08 7 0.12
3 vs. 2 9 0.09 12 0.04
2 vs. 0 11 0.03 19 <0.01
3 vs. 1 16 <0.01 19 <0.01
3 vs. 0 20 <0.01 31 <0.01

*Obtained using t-test.
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ED incidence increased with increasing of number
of comorbidities. Table 3b shows the results of
pairwise comparisons of ED incidence by number
of VC—these pairwise comparisons were done at
two time points (pre-XRT and 4 years post-XRT).
At 4 years post-XRT, the increases in ED inci-
dence for all pairwise comparisons were statisti-
cally significant except the 2 vs. 1 comparison.

The analysis of ED incidence by race is shown
in Table 4—Table 4a shows the comparisons by
race at the 4 time points—pre-XRT and 1, 2, and
4 years post-XRT. As shown, although there was a

slightly higher ED incidence in AA men at all time
points (due perhaps to the slightly higher VC inci-
dence in AA men), these differences in ED rates
did not reach statistical significance. Table 4b dis-
plays the results of the logistic regression analysis
of ED incidence at each of the 4 time points by
number of VC. None of these regression analyses
at any time point demonstrated significant differ-
ences by race.

Figure 1 comprehensively displays the general
results shown in Tables 3 and 4 visually. As shown,
ED incidence steadily rises with time interval

Table 4 Erectile dysfunction incidence by race

a. Overall pre- and post-XRT ED incidences for Caucasian and AA patients

Caucasian (%) AA (%) P value*

Pre-XRT ED 20 23 0.31
Post-XRT ED
1 year 48 54 0.12
2 years 52 58 0.12
4 years 55 60 0.21

b. Logistic regression analyses of ED differences by time point, number of VC, and race

Number of VCs

Pre-XRT ED

Post-XRT ED

1 year 2 years 4 years

Caucasian AA Caucasian AA Caucasian AA Caucasian AA

0 14% 16% 38% 40% 38% 43% 40% 46%
1 18% 19% 46% 49% 52% 56% 55% 57%
2 22% 28% 52% 57% 56% 61% 60% 64%
3 33% 36% 67% 73% 67% 75% 71% 76%
P value† 0.37 0.53 0.30 0.25

*Obtained using t-test
†Obtained using chi-square test.

Figure 1 Pre-RT and post-RT ED
incidences. At each time point, the ED
incidences for each subgroup of
patients with 0 (blue), 1 (red), 2
(yellow), and 3 (purple) vascular
comorbidities are shown. For each
time point, Caucasian patients are
presented on the left and AA patients
on the right.
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post-XRT and with increasing number of VC,
with only a slight difference by race within each
interval/VC-based bin.

Discussion

Our study is the first to report pre- and post-XRT
ED as a function of VCs and race. HTN, DM, and
HL are well-known risk factors for ED in the
general population [8], which was consistent with
our finding that, prior to radiation treatment, ED
incidence increased with increasing number of VC
(Table 3). In the post-XRT setting, we found a
progressive increase in ED with increasingly
longer post-XRT time interval, regardless of
number of VC. At 1-year follow-up, the overall ED
incidence for all patients was 52%, which is similar
to other series [12,13]. An important and novel
finding in our study was that the number of VC had
a profound impact on development of radiation-
induced ED. Indeed, at all three post-XRT analysis
time points (Table 3 and Figure 1), the post-XRT
ED incidence increased substantially with increas-
ing the number of VC. Also, as shown in Table 3,
the majority of the pairwise ED incidence com-
parisons based on number of VC reached statistical
significance. Furthermore, when the number of
VC within each comparison differed by 2 or more
(i.e., 3 vs. 0, 3 vs. 1, and 2 vs. 0), the differences in
ED incidence were highly significant, further
highlighting that number of VC plays a critical role
in increasing the rate of post-XRT ED.

Our study results clearly demonstrate that
radiation-induced ED incidence increases when
patients have more VCs (HTN, HL, and DM). It
will be quite interesting to understand the under-
lying mechanism. Our results may support the
hypothesis that post-XRT ED is due to vasculo-
genic insufficiency [5]. Several studies have demon-
strated (by Doppler ultrasound) a reduction of
blood flow in the carvernosal artery in men with ED
after radiotherapy [14,15]. It has been suggested
that radiotherapy causes pathological changes in
small- and medium-sized arteries, which decrease
vascular inflow. These arterial changes resemble
chronic, progressive atherosclerosis and may be
due to a combination of intimal fibrosis, direct
damage to the arterial wall, and acceleration of
naturally occurring atherosclerosis [16]. The first
animal study demonstrated fibrosis change in the
arteries of rat corpora cavernosa after adequate
irradiation [17]. In addition to vascular parameters,
XRT may have a direct effect on endothelial cell
function, which is an area of strong interest in ED

research [18]. Data from other body sites indicates
that endothelial cells may be the initial target for
damage during radiotherapy [19]. Perhaps radia-
tion accelerates the process of atherosclerosis par-
ticularly if the patient has one or more VCs. This
model is consistent with the findings of the present
study, namely that post-XRT ED incidence
increased when patients had more VCs.

Interventions that seek to minimize vascular
damage during RT may be a reasonable strategy.
Radiation Therapy Oncology Group (RTOG)
08–31 is a randomized, placebo-controlled trial
currently examining the role of tadalafil for pro-
phylaxis against XRT-induced ED [20]. As a
follow-up to this study, perhaps future studies
examining interventions should control for
number and severity of VC.

Our study is also the first to analyze pre- and
post-XRT ED incidence by race. Pre-XRT ED
incidence was slightly higher in AA (Table 4),
likely due to the higher number of VC. This
finding is consistent with other studies. Our study
further shows, though, that when accounting for
VC, there are no significant differences in ED
incidence as a function of race. This is an impor-
tant finding and will facilitate further studies that
can focus on the impact of VC (particularly DM
and HTN) on patient selection for prostate cancer
quality of life trials and to enhance enrollment of
AA patients on these trials.

There are several limitations to our study. First,
we did not assess severity of the VCs or whether
they were controlled through medication or
diet—this will be done in a future analysis. Second,
the definition of ED for this study was dichoto-
mous and was based on abstraction of medical
record (history of ED documented on history or
follow-up or use of medications/treatment aids for
ED). The use of validated instruments [21] would
certainly increase our ability to accurately assess
sexual function. Indeed, in a subset analysis of
the Massachusetts Male Aging Study, a single-
question self-report was found to be able to iden-
tify ED as well as a urologic examination including
a sexual history, medical history, psychosocial
history, and physical exam [22]. However, it should
be noted that our definition of ED was applied
uniformly to all patients across subsets so any
potential recruitment biases based solely on the
ED definition would be minimal. Third, though
the Caucasian and AA populations were balanced
overall, unbalanced items (such as age and PSA)
may be confounding factors; it should be noted,
however, that no significant differences based on
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race were demonstrated in any of the analyses
based on time points or number of VC. Fourth,
hormone treatment is a well-known factor to cause
ED. Therefore, we investigated the hormone
treatment rate among patients with different
number of VC. As shown in Table 5, the hormone
treatment percentage is not increasing as the
number of VC increases. Fifth, the ED rates may
vary as a function of radiation modality (EBRT
alone vs. combination of EBRT with BT) [4,23],
due in part perhaps to differences in radiobiologi-
cal doses between these modalities [24]. However,
results as a function of radiation modality
(EBRT + BT) are shown in Table 6—as shown,
the results seem to be consistent for patients with
different numbers of VCs. Sixth, the dose to the
penile structures may be another confounding
factor because it has been shown to correlate with
radiation-induced ED [6,25]. This is an ongoing
area of investigation that we plan to analyze and
report separately at a later date. Seventh, as our
study population was in a single hospital system
treated over a time period in which older radio-
therapy techniques were used for some patients,
our work requires validation in a larger study
population treated with intensity-modulated
radiotherapy, perhaps in the multi-institutional
consortium setting [26,27]. Finally, the biases
inherent to all retrospective analyses are under-
stood by the investigators.

Despite these limitations, our study provides
evidence that VC play an important role in the
development of both pre- and post-XRT ED. Our
results can be used to guide physicians in counsel-
ing patients on the incidence of ED by number of
VC. Our results can also serve as preliminary data
for prospective efforts aimed at reducing post-
XRT ED and for future investigations focusing on
the incorporation of VC into ED-related treat-
ment management decisions.

Conclusions

Our analysis represents the first effort in exploring
post-XRT ED by VC and race. Our results suggest
that number of VC have a significant effect on the
development of post-XRT ED. Pre- and post-
XRT ED appear to be independent of race when 1,
2, or 3 VC are considered. These findings can be
useful for physicians in patient’s consultation
regarding post-XRT ED and as preliminary data
for prospective efforts aimed at reducing post-
XRT ED.
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Summary

The objective of this work is to
characterize and quantify
respiratory-induced prostate
motion using wavelet trans-
form of the Calypso tracking
system. Our results show that
prostate motion is influenced
by respiration inmost fractions,
and this technique provides
a tool that can be useful if one
moves toward smaller margins
(�5 mm). This also opens ups
the possibility of being able to
develop patient-specific
margins, knowing that prostate
motion is not unpredictable.
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Purpose: The objective of this work is to characterize and quantify the impact of respiratory-
induced prostate motion.
Methods and Materials: Real-time intrafraction motion is observed with the Calypso 4-
dimensional nonradioactive electromagnetic tracking system (Calypso Medical Technologies,
Inc. Seattle, Washington). We report the results from a total of 1024 fractions from 31 prostate
cancer patients. Wavelet transform was used to decompose the signal to extract and isolate the
respiratory-induced prostate motion from the total prostate displacement.
Results: Our results show that the average respiratory motion larger than 0.5 mm can be
observed in 68% of the fractions. Fewer than 1% of the patients showed average respiratory
motion of less than 0.2 mm, whereas 99% of the patients showed average respiratory-induced
motion ranging between 0.2 and 2 mm. The maximum respiratory range of motion of 3 mm
or greater was seen in only 25% of the fractions. In addition, about 2% patients showed anxiety,
indicated by a breathing frequency above 24 times per minute.
Conclusions: Prostate motion is influenced by respiration in most fractions. Real-time intrafrac-
tion data are sensitive enough to measure the impact of respiration by use of wavelet decompo-
sition methods. Although the average respiratory amplitude observed in this study is small, this
technique provides a tool that can be useful if one moves to smaller treatment margins (�5 mm).
This also opens ups the possibility of being able to develop patient specific margins, knowing
that prostate motion is not unpredictable. � 2013 Elsevier Inc.
Introduction

Conformal external beam therapy can effectively enhance the
local control of prostate cancer (1, 2). The knowledge of organ
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motion is essential to ensure conformed dose delivery to the target
and minimize toxicity to the surrounding organs at risk during
prostate radiation therapy (3, 4). Prostate intrafraction motion
causes the dose distribution to be smeared. Even with perfect
external immobilization techniques and minimized whole pelvic
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motion controlled by patient consciousness, the intrafraction
internal organ motion during treatment will contribute to smearing
of the dose distribution and increase toxicity of surrounding tissue
significantly (5, 6). In general, prostate motion is a combination of
the contribution from bladder and rectum filling and respiratory
motion. Currently, there is very limited understanding of how
prostate movement is affected by the respiratory cycle because
most intrafraction tracking techniques cannot separate the
contribution from respiratory-induced prostate motion from the
bladder and rectum filling. In this article we attempt to isolate the
respiratory motion from the total prostate displacement and
characterize the contribution of respiratory-induced prostate
motion using a wavelet transform technique. To our knowledge,
this is the first study of this type.

High-precision, real-time intrafraction motion is obtained with
the Calypso 4-dimensional nonradioactive electromagnetic posi-
tion tracking system (Calypso Medical Technologies, Inc. Seattle,
Washington). Three electromagnetic transponders (“beacon”) are
implanted into the prostate. During daily radiation treatment, the
beacon transponders communicate with the Calypso system
through nonionizing radiofrequency signal, and the prostate iso-
center displacement in the superoinferior, anteroposterior, and
lateral directions is recorded at a frequency of 10 Hz. The
objective of this work is to characterize and quantify the impact of
respiratory-induced prostate motion from these tracking data. We
report the results from a total of 1024 fractions from 31 prostate
cancer patients who underwent daily intensity modulated radiation
therapy (IMRT) treatment.
Methods and Materials

Patient and Calypso implantation procedure

A total of 31 subjects clinically diagnosed with prostate cancer
and treated with IMRT at Winship Cancer Institute, Atlanta,
Georgia, were included in the study. The real-time tracking
technique, which was instrumental in initial Food and Drug
Administration approval for the Calypso system, has been previ-
ously described (7-9). In brief, all patients underwent implantation
of 3 beacon electromagnetic transponders into the prostate via
transrectal ultrasound guidance before the radiation treatment. All
patients were treated in the supine position as follows: a band was
placed around the feet, a wedge under the knees, a ring for the
hands on the chest, and a Vac-Loc bag for daily immobilization.
All patients were instructed to drink 500 mL of fluid 4 hours
before simulation and during daily treatments. No specific bowel
preparation instructions were provided. A low-residue diet was
encouraged during treatments, and patients were encouraged to
have a bowel movement before daily treatments.

After daily localization with minimal initial residual, intra-
fractional motion of the prostate during the treatment is monitored
at a 10-Hz frequency as the lateral (RL), anteroposterior (AP), and
superoinferior (SI) displacement of the isocenter with the Calypso
4-dimensional tracking system (7, 8). An action threshold of 3 mm
of prostate motion or greater lasting for more than 30 seconds was
instituted. If this was exceeded, the beam and prostate tracking
was stopped and the patient was repositioned with minimal
residual before treatment was resumed. A typical IMRT course
consisted of 38 to 39 fractions, and the mean fraction length was 7
minutes 6 seconds (426 seconds). Only the fractions consisting of
a minimum of 3 minutes of continuous tracking data were
included in the analysis, resulting in a total of 1024 fractions. The
tracking data obtained from the Calypso system and analyzed
within this work are limited to intrafraction prostate motion
obtained after initial prostate localization with near 0 initial
residual.

Prostate motion characterization and
quantification using wavelet analysis

Normally, Fourier transform is extremely useful for extracting
frequency content of the respiratory sinusoidal signal. However,
the major drawback is the requirement for the signal to be
stationary. Unfortunately, prostate motion tracking data are non-
stationary, characterized by drifting, abrupt changes, and multiple
excursions (7). To overcome the limitation of Fourier trans-
formation, wavelet transform is used as a more suitable tool.
Wavelet analysis allows the use of stretched wavelets to extract
low-frequency information and compressed wavelets to extract
high-frequency information (10, 11). As a result, the particular
power spectral band relevant to respiration motion can be effec-
tively separated from high-frequency noise through this multi-
resolution time-frequency analysis.

Uniform samples at 10 Hz were obtained from the real-time
Calypso tracking data. Then, the data were wavelet transformed
with the discontinuous wavelet transform algorithm to 5 levels by
use of db4 wavelets (Daubechies wavelets) (13). The use of 10 Hz
results in the following frequency bands: D5, 0.1563 to 0.3125 Hz;
D4, 0.3125 to 0.625 Hz; D3, 0.625 to 1.25 Hz; D2, 1.25 to 2.5 Hz;
and D1, 2.5 to 5 Hz. The frequency band corresponds to respiratory
frequency as follows: D5, 10 to 20 times per minute; D4, 20 to 40
times per minute; D3, 40 to 80 times per minute; D2, 80 to 160
times per minute; and D1, 160 to 320 times per minute. The typical
breathing pattern is around 10 to 24 breaths per minute, and thus
extracted signals at D5 and D4 bands are mainly used for further
analysis. It is essential to include the D4 band because some
patients may have anxiety or respiratory distress during radiation,
resulting in accelerated breathing frequency above 24 times per
minute. On the other hand, the frequency ranges of D1 through D3
are apparently too high for respiratory motion. Power spectral
density analysis was performed to extract the peak breathing
frequency and the average total power. The average total power is
defined as the area under the power spectral density curve.
Results

Prostate motion characterization and
quantification using wavelet analysis

The general pattern of the prostate motion may not be predicable
because the frequency and magnitude of the effect from bladder
and rectum filling are unknown. Various excursion patterns have
shown that it may be futile to predict the general prostate motion
behavior (7). However, a closer look at the tracking data, as shown
in Figure 1, clearly shows that there exists an oscillation pattern,
especially in the AP and SI directions. This pattern exists in all
fractions for all patients, and the difference is just a matter of
magnitude rather than existence of the pattern. Graphically, the
oscillation is about 16 to 18 times per minute and consistently



Fig. 1. (a) Example of tracking data. (b) A zoom-in view of a portion of the tracking data shows the respiratory-induced oscillation
pattern especially in the anteroposterior (AP) and superoinferior (SI) directions. (RL, lateral.)
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present throughout the entire tracking period. To effectively
analyze this respiratory-induced prostate motion, this periodical
signal must be extracted and separated from the general prostate
motion. For that purpose, wavelet decomposition is used in our
study because it is ideal for situations where a repetitive pattern
caused by respiration exists amidst background noise caused by
prostate drifting and bladder or rectal filling. We have shown in
our previous publication (12) that the prostate motion in the AP/SI
direction is highly correlated, which is consistent with the longi-
tudinal oblique motion of the prostate, and likely due to the effect
of respiration on an organ confined between the bladder and
rectum. For this reason, the magnitude and peak frequency of the
respiratory motion are extracted from the displacement in the
oblique direction (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
) (y-axis for AP and z-axis for SI).

An example of the wavelet decomposition is shown in
Figure 2. The original signal is decomposed to a low-frequency
approximation at level 5 (A5) and high-frequency details at 5
levels (D5-D1). It is obvious that details D1 through D3 are
beyond the range of respiratory frequency, and the D4 and D5
frequency range (10-40 breaths per minute) represents the range
for most of the patients. An example of the D4-plus-D5 oscillation
superimposed on the A5 approximation in comparison to its
original signal is shown in Figure 3. Detail at levels 4 and 5 (D4
plus D5) well represents the major oscillation pattern while dis-
regarding the higher-frequency noises.

The power spectral density analysis for D3, D4, and D5 is
shown in Figure 4. The total represents the sum of all 5 levels of
details. D5 showed the highest and most dominant signal strength
compared with signal at the D4 and D3 frequency range, indi-
cating that the oscillation signal is mainly at the D5 frequency
range. For a total of 1024 fractions, there are only 157 fractions
(15%) during which the patient’s respiratory frequency is above
20 times per minute. Moreover, only 24 fractions (2%) are higher
than 24 times per minute, which may indicate the increased
anxiety level of the patient due to the treatment.

The quantification of the respiratory motion amplitude is then
determined by the average and maximum respiratory range of
motion in the oblique direction. To isolate the total displacement
and the impact of respiratory motion, we used the following steps
(the notations can be found in Fig. 2): (1) The oscillation details
(D4 plus D5) were extracted for both AP (y-axis) and SI (z-axis)
directions. (2) Regardless of the displacement for the approxi-
mation component (A5), the respiratory motion in oblique direc-
tion is defined as RMZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðD4þD5Þ2 þ zðD4þD5Þ2

p
. This way, we only
calculate the contribution of the amplitude from the respiratory
motion rather than total displacement. (3) The average absolute
amplitude (RMmean) and the difference between maximum and
minimum amplitude (RMmax) of the oblique motion obtained in
step 2 is calculated for each fraction. (4) The average respiratory
range of motion is then determined as 4 � RMmean, taking into
account the positive and negative signs of the data. For instance,
an oscillation wave with an amplitude of 2 mm (� 1 mm) has an
average absolute amplitude of 0.5 mm. Meanwhile, the maximum
respiratory range of motion is RMmax. The results are shown in
Table 1.

It is worth noting that the amplitude presented in this article is
only the oscillation component of the tracking data. The actual
average displacement of the signal can be much higher than 1 or 2
mm. For this reason, the amplitude reported in this article is much
smaller than what is normally reported in the literature on deep
breathing (14).

Discussion

The small amplitude of respiratory-induced prostate motion
extracted from wavelet analysis should not be confused with the
overall prostate motion, which has been investigated by several
groups. The Calypso real-time tracking data showed that the
continuous prostate motion can be unpredictable, ranging greatly
from constant drifting, abrupt changes, or a combination thereof,
given the unpredictability of bladder filling, rectum filling, and
flatulence (7). Shah et al (15) reported prostate motion greater than
3 mm and greater than 5 mm for 12.6% and 2.9% of fractions in the
supine position, respectively. Similarly, Langen et al (16) reported
prostate motion greater than 3 mm and greater than 5 mm for 14%
and 3% of fractions, respectively. Willoughby et al (8) reported
prostate displacements of 0.9 � 0.35 mm, 3.61 � 3.13 mm, and
3.92 � 4.32 mm in the lateral, AP, and SI directions, respectively.

Given the complexity of prostate motion, we present the first
attempt to isolate the high-frequency respiratory-induced motion
from the general prostate motion. The amplitude of respiratory
motion alone will be the minimum amount of planning target
volume margin required and is likely a function of how frequent
prostate motion is imaged during treatment delivery (9). Malone
et al (17) quantified and characterized the respiratory motion using
implanted gold fiducial markers. A total length of a 20-second
interval of fluoroscopy was analyzed, and the maximum



Fig. 2. Example of wavelet decomposition. The signal (S) is decomposed to 5 levels. (f, frequency.)
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displacement in the AP and SI directions was measured. For a total
of 20 patients,mean displacementwas 1.6mmand 2.9mm in theAP
and SI directions, respectively. Dinkel et al (14) evaluated
Fig. 3. D4-plus-D5 oscillation superimposed on A5 approxi-
mation in comparison to its original signal.
respiratory-induced prostate motion using cineemagnetic reso-
nance imaging. The temporal resolution was 3 frames per second,
and the total acquisition time was 15 seconds. From the magnetic
Fig. 4. Power spectral density analysis for D3, D4, and D5 and
sum of details.



Table 1 Results for amplitude of respiratory prostate motion

No. of fractions

Average respiratory range of motion
0-0.2 mm 4 (<1%)
0.2-0.5 mm 322 (31%)
0.5-1.0 mm 688 (67%)
1.0-2.0 mm 10 (1%)
>2.0 mm 0 (0%)

Maximum respiratory range of motion
0-0.5 mm 16 (2%)
0.5-1.0 mm 252 (25%)
1.0-2.0 mm 348 (34%)
2.0-3.0 mm 145 (14%)
>3.0 mm 263 (25%)
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resonance imaging measurement, the mean displacement of the
prostate during deep breathing in the SI and AP directions was 2.7
mm and 1.8 mm, respectively. The prostate displacement for
abdominal contraction (via a coughing maneuver) was significantly
higher: mean SI displacement was 8.4mm, andmeanAPmovement
was 8.3 mm. Our results show that most patients have a mean
prostatemotion below1mm,which is amuch lower number than the
numbers in previous studies. The 2 main reasons are (1) our data
were acquired during the actual treatment with normal breathing,
and thus deep breathing or conscious abdominal contraction is not
included; and (2) the respiratory component is effectively extracted
by use of wavelet decomposition, thus excluding the possible large
displacement caused by other factors such as bladder/rectum filling
or flatulence.

Udrescu et al (18) investigated respiratory prostate motion
using 4-dimensional computed tomography and concluded that
there is no respiratory motion observed. In this study the SI
direction displacement is, in general, unattainable because of the
2.5-mm slice thickness. In both the AP and lateral directions, the
prostate motion stayed below 1 mm, with an average of 0.27 mm
for a period of 2 minutes. The amplitude of the respiratory motion
is consistent with our results, where 99% patients had a mean
prostate motion below 1 mm.

The use of high-frequency, real-time tracking data allowed us
to evaluate the respiratory motion quantitatively. Our approach has
several distinct improvements over respiratory-induced prostate
motion analysis in the literature (13, 17, 18). First, the oscillation
component of the prostate motion is identified through wavelet
analysis, which effectively isolates the respiratory-induced pros-
tate motion from the total prostate displacement. Second, previous
publications reported the results from visual observation because
of the limited length and sampling rate of data. The 10-Hz real-
time tracking data during treatment give sufficient information
to extract the frequency and amplitude of the respiratory-induced
prostate motion through wavelet frequency-time analysis. Indeed,
this is the first time wavelet analysis has been used to characterize
respiratory-induced prostate motion during radiation therapy.
Conclusions

Prostate motion is influenced by respiration in most fractions.
Real-time intrafraction data are sensitive enough to measure the
impact of respiration by use of wavelet decomposition methods.
Although the average respiratory amplitude observed in this study
is small, this technique provides a tool that can be useful if one
moves to smaller treatment margins (�5 mm). This also opens up
the possibility of being able to develop patient-specific margins,
knowing that prostate motion is not unpredictable. Moving toward
0-mm margins will only be possible if deformation change of the
prostate is also taken into account.
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Summary

The objective of this work is
to test the validity of the
Gaussian approximation for
prostate motion through
characterization of its spatial
distribution using Calypso
4D nonradioactive electro-
magnetic tracking system.
Our results showed that the
prostate motion is highly
correlated in the AP and SI
directions. In addition, the
spatial distribution of pros-
tate motion is elongated in an
oblique direction, indicating
that the organ motion dosi-
metric modeling using
Gaussian kernel may need to
be modified.
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Purpose: The objective of this work is to test the validity of the Gaussian approximation for
prostate motion through characterization of its spatial distribution.
Methods and Materials: Real-time intrafraction prostate motion was observed using Calypso 4-
dimensional (4D) nonradioactive electromagnetic tracking system. We report the results from
a total of 1024 fractions from 31 prostate cancer patients. First, the correlation of prostate
motion in right/left (RL), anteroposterior (AP), and superoinferior (SI) direction were deter-
mined using Pearson’s correlation of coefficient. Then the spatial distribution of prostate motion
was analyzed for individual fraction, individual patient including all fractions, and all patients
including all fractions. The displacement in RL, AP, SI, oblique, or total direction is fitted into
a Gaussian distribution, and a Lilliefors test was used to evaluate the validity of the hypothesis
that the displacement is normally distributed.
Results: There is high correlation in AP/SI direction (61% of fractions with medium or strong
correlation). This is consistent with the longitudinal oblique motion of the prostate, and likely
the effect from respiration on an organ confined within the genitourinary diaphragm with the
rectum sitting posteriorly and bladder sitting superiorly. In all directions, the non-Gaussian
distribution is more common for individual fraction, individual patient including all fractions,
and all patients including all fractions. The spatial distribution of prostate motion shows an elon-
gated shape in oblique direction, indicating a higher range of motion in the AP and SI directions.
Conclusions: Our results showed that the prostate motion is highly correlated in AP and SI
direction, indicating an oblique motion preference. In addition, the spatial distribution of pros-
tate motion is elongated in an oblique direction, indicating that the organ motion dosimetric
modeling using Gaussian kernel may need to be modified to account for the particular organ
motion character of prostate. � 2013 Elsevier Inc.
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ARTICLE IN PRESS 
Introduction

During prostate cancer external beam radiation therapy, the
knowledge of organ motion is essential to ensure conformed dose
Fig. 1. Examples of prostate motion distribution analysis for individual
right/left (RL), anteroposterior (AP), superoinferior (SI), oblique, and tot
the histogram. (Row 7) Spatial distribution of the transponder displacem
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delivery to the target while minimizing toxicity to the surrounding
organs at risk. Organ motion leads to smearing of dose distribu-
tion, causing reduced sharpness of intended dose conformality
(1, 2). Interfraction motion will not cause blurring in a given
fraction. (Row 1) Raw tracking data. (Rows 2-7) Histogram plot for
al directions. (Red line) Gaussian fit of the tracking data overlaid on
ent. The upper limit of the x, y, and z axes are set to 6 mm.
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Table 1 The result for correlation analysis

Correlation RL/AP RL/SI AP/SI

Strong (R � 0.7) 123 (12%) 141 (14%) 401 (39%)
Medium (0.5 � R < 0.7) 202 (9%) 190 (18%) 231 (22%)
Weak (0.3 � R < 0.5) 273 (23%) 247 (26%) 173 (17%)
None (R < 0.3) 427 (42%) 447 (44%) 220 (21%)

Abbreviations: AP Z anteroposterior; RL Z right/left; SI Z
superoinferior.

The boldface red text emphasizes the strong correlation in AP/SI

direction and weak correlation in the RL/AP and RL/SI directions.
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fraction; rather, the total accumulated dose distribution will be
blurred. To characterize and minimize the interfraction motion,
various daily localization techniques have been developed, such as
surface fiducial or 3-point surface alignment, implanted fiducial,
or bony landmark with on board imaging, ultrasound, and kV/mV
CBCT (3-5). Meanwhile, the daily intrafraction motion also plays
an essential role in determining treatment planning margin (6),
and may be a function of how frequent the prostate motion is
sampled during a course of treatment (7).

Decreasing the planning target volume (PTV) margins can
potentially reduce the radiation exposure to normal tissue and
limit the toxicity and side effect for treatment. To decrease PTV
margins in a safe manner, precise understanding and proper
modeling of the intrafraction motion is critical. High precision,
real-time intrafraction prostate motion was obtained using
Calypso 4D nonradioactive electromagnetic tracking system.
Three electromagnetic transponders (“Beacon”) were implanted
into the prostate. During daily radiation treatments, the Beacon
transponders communicated with the Calypso System through
nonionizing radiofrequency signal and the prostate isocenter
displacement in SI, AP, and lateral directions is recorded at
a 10-Hz frequency. The availability of these measurements allows
us to evaluate and characterize the intrafraction prostate motion in
detaildin particular, whether or not the motion errors can be
represented by a Gaussian function.

The objectives of this workwere (1) to investigate the directional
dependence and correlation of prostate motion; and (2) to charac-
terize and quantify the spatial distribution of the prostate motion.

Methods and Materials

Patient and calypso implantation procedure

A total of 31 patients were included in this study. These subjects
were clinically diagnosed with prostate cancer and treated with
intensity modulated radiation therapy at the Taussig Cancer
Institute at Cleveland Clinic. Three Beacon electromagnetic
Table 2 The result of prostate motion distribution analysis for indiv

RL
x axis y

Number of fractions with Gaussian distribution 139
Percentage of total fractions with Gaussian distribution 13.6

A total of 1024 fractions were included in the analysis.

Abbreviations: AP Z anteroposterior; RL Z right/left; SI Z superoinferior.
transponders were implanted into the prostate via transrectal
ultrasound guidance before the radiation treatment. Intrafractional
motion of the prostate is monitored at 10-Hz frequency of the RL,
AP, and SI displacement of the isocenter using the Calypso 4-
dimensional (4D) tracking system. Our Calypso technique, which
was instrumental in initial US Food and Drug Administration
approval for the Calypso system, has been previously described (8,
9). Briefly, all patients were treated in the supine position with
a band placed around the feet, a wedge under the knees, a ring for
the hands on the chest, and a Vac-Loc bag for daily immobiliza-
tion purposes. They were instructed to drink 500 mL of fluid 4
hours before the daily treatments. A low-residue diet was
encouraged during treatments and patients were encouraged to
have a bowel movement earlier during the day before treatments.
Typical intensity modulated radiation therapy treatments included
38-39 daily fractions, and only the fractions consisting of
a minimum of 3 minutes’ continuous tracking data are included in
the analysis, resulting in a total of 1024 fractions.

Prostate motion direction correlation

To characterize the directional dependency of prostate motion, the
correlation in RL, AP, and SI direction from tracking data were
determined using Pearson’s correlation of coefficient. The
magnitude of correlation coefficient �0.7 indicates a strong
correlation between 2 directions. Medium correlation is defined by
the magnitude of correlation coefficient between 0.5 and 0.7. The
magnitude of correlation coefficient between 0.3 and 0.5 indicates
a low correlation, and little if any correlation exists for those data
pairs whose magnitude of coefficient is <0.3. A 99% confidence
interval for the correlation coefficient is required.

Prostate motion distribution analysis: individual
fraction

The procedure to account for motion and setup error in dose
calculation uses Gaussian approximation to describe the blurring
effect. Because it has been long believed that prostate motion and
setup errors are random, Gaussian approximation is considered to
be good without loss of generality, especially after multiple
fractions based on the central limit theorem (2, 10). To evaluate
the validity of the Gaussian approximation assumption, the
prostate motion was characterized using real-time tracking data
during radiation treatment.

For each fraction of each patient, the tracking data indi-
cating displacement in RL (x axis) direction, AP (y axis)
direction, and SI (z axis) direction was obtained. The total

displacement in the oblique direction (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
) and the total

displacement in all directions (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
) were also

calculated. Afterward, the displacement was fitted into
idual fractions

AP
axis

SI
z axis Oblique

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2 þ y2Þp
Total

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2 þ y2 þ z2Þp
77 85 89 89
7.5 8.3 8.7 8.7



Table 3 The result of prostate motion distribution analysis for individual patient including all fractions

RL
x axis

AP
y axis

SI
z axis Oblique

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2 þ y2Þp
Total

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2 þ y2 þ z2Þp
Number of patients with Gaussian distribution 8 3 2 2 4
Percentage of patients with Gaussian distribution 33 12.5 8.3 8.3 16.7

A total of 24 patients were included in the analysis.

Abbreviations: AP Z anteroposterior; RL Z right/left; SI Z superoinferior.
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a Gaussian distribution and was used to evaluate the validity of
the hypothesis that the distribution is normally distributed. The
Lilliefors test was used when the null distribution is unknown
and has to be estimated (11). This was suitable for our study
because we were interested in whether or not the distribution is
Gaussian with any mean and variance.

Prostate motion distribution measurement: total
fractions of one patient

We evaluated the validity of the Gaussian approximation
assumption of accumulative fractions of prostate motion from
a single patient. Only those patients who had more than 30 valid
fractions were included in this analysis, resulting in 24 patients in
total. All the fractions of displacement tracking data were
combined into a single array, and displacement in RL, AP, SI,
oblique, and all directions were calculated for each patient. The
same Gaussian distribution test was used to quantify the
displacement on an individual patient level.

Prostate motion distribution measurement: total
fractions from all patients

Last, we evaluated the validity of Gaussian approximation
assumption of accumulative fractions of prostate motion from all
patients on a population level. The recorded displacements from
all 24 patients who had more than 30 fractions of tracking data
were combined into one large array. Again, the same Gaussian
distribution test was used to quantify the displacement at an all-
fraction, all-patient level.
Results

Prostate motion correlation in AP and SI directions

Visually, the AP and SI displacement tends to move together as
shown in the first row in Figure 1. The result for the correlation
analysis is shown in Table 1. Thirty-nine percent of the frac-
tions show strong correlation in the AP/SI direction, whereas
only 12% and 14% of the fractions show strong correlation in
RL/AP and RL/SI directions. Moreover, 42% and 44% of the
fractions show no correlation in RL/AP and RL/SI directions.
The high percentage of correlation in the AP/SI direction (61%
medium or strong correlation) is consistent with the longitudinal
oblique motion of the prostate, and likely from the effect of
respiration on an organ confined within the genitourinary dia-
phragm with the rectum sitting posterior and the bladder sitting
superiorly.
Prostate motion distribution measurement:
individual fraction

The results are shown in Table 2. Four examples were selected for
presentation as shown in Figure 1.

Case 1 (first column): This case shows relatively small and
stable prostate motion throughout the fraction. The histograms
revealed that the displacement in all directions are normally
distributed, indicating a random motion in all directions. The
3-dimensional displacement spatial distribution shown in the last
row indicates a uniform, small motion in all directions. This is the
ideal case where the patient has both constrained physical
movement and little internal organ motion.

Case 2 (second column): This case shows high range of motion
with several excursions. In contrast to case 1, the histogram
reveals that none of the displacement in any direction is normally
distributed. All of them have multiple peaks on their histogram
plots. Accordingly, there is no clear pattern of the spatial
distribution of the transponder displacement in all directions as
shown in the last row.

Case 3 (third column): This case shows an overall stable
motion with a period of excursion toward the end of the treatment.
The histogram reveals that the displacement in RL directions
shows a nice Gaussian distribution. However, the displacements
are not normally distributed in all other directions. As shown in
Table 2, 13.6% of all 1024 available fractions had Gaussian
distribution in the RL directional the percentage is higher than
other directions. The spatial distribution of the transponder
displacement shows an elongated pattern in oblique direction,
indicating a larger range of motion in AP and SI directions.

Case 4 (fourth column): This case shows an overall stable but
drifting prostate motion. The histogram reveals that the
displacement in RL, AP, SI, and oblique directions are not
normally distributed where multiple peaks in histogram are
observed. However, the displacement in total direction is normally
distributed. As shown in the last row, the spatial distribution of the
transponder displacement shows an overall uniform distribution in
all directions regardless of the non-Gaussian distribution in each
individual direction.

In all directions, the non-Gaussian distribution is more
common. The RL direction has a higher percentage of Gaussian
distribution than other directions.

Prostate motion distribution measurement: total
fractions of one patient

The results are shown in Table 3. Three examples were selected
for presentation as shown in Figure 2. The number of tracking data
is large, and the plot in the first row is downsampled to select
every tenth data for presentation purpose.



Fig. 2. Examples of prostate motion distribution analysis for individual patient including all fractions. (Row 1) Downsampled raw
tracking data. (Rows 2-7) Histogram plot for right/left (RL), anteroposterior (AP), superoinferior (SI), oblique, and total directions.
(Red line) Gaussian fit of the tracking data overlaid on the histogram. (Row 7) Spatial distribution of the transponder displacement.
The upper limit of the x, y, and z axes are set to 12 mm.
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Patient 1 (first column): This patient shows overall confined
range of prostate motion throughout the treatment. The histograms
revealed that the displacements in all directions are normally
distributed except the RL direction. The 3-dimensional displace-
ment spatial distribution shown in the last row indicates
a uniformly distributed motion in all directions.

Patient 2 (second column): This patient shows higher range of
motion. In contrast to patient 1, the histogram reveals that none of
the displacements in any direction is normally distributed. Even
though all the histogram is single peaked, the distribution fails to
satisfy the normality test based on the shape of the histogram.
Accordingly, the spatial distribution of the transponder displace-
ment shows an elongated distribution in oblique direction,
indicating a larger range of motion in the AP and SI directions.

Patient 3 (third column): This patient has large range of
motion. Although the histogram revealed the normal distribution
in the RL and oblique directions, all the displacements in other
directions do not have normal distribution. The spatial distribution
of the transponder displacement again shows an elongated
distribution in oblique direction.



Fig. 3. Examples of the displacement analysis. (a) Downsampled raw tracking data. (b) Spatial distribution of the transponder
displacement. The upper limit of the x, y, and z axes are set to 20 mm. (c-f) Histogram plot for right/left (RL), anteroposterior (AP),
superoinferior (SI), oblique, and total directions. (Red line) Gaussian fit of the tracking data overlaid on the histogram.
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Again, the non-Gaussian distribution is more common for all
directions, and the RL direction has a higher percentage of
Gaussian distribution than other directions. A total of 33% and
16.7% of all patients have normally distributed RL and total
motion, respectively, and this ratio is approximately twice the
percentage for individual fraction for each patient. The accumu-
lative effect from all fractions may explain the increased
percentage.

Prostate motion distribution measurement: total
fractions from all patients

The results are shown in Figure 3. The number of tracking data is
large and the plot in the first row is downsampled to select every
hundredth data for presentation purpose. All the tracking data
were combined to evaluate whether the Gaussian distribution is
a good approximation at a population level. Even through all the
histograms have only a single peak (Fig 3b), all of them failed the
normality test. The 3-dimensional displacement plot clearly shows
an elongated patterned in oblique direction, indicating this trend
works at a population level.

Discussion

The intrafraction motion effect is normally modeled and included
in the treatment planning as a Gaussian function with random
distribution. Bortfeld et al have developed simulation tools and
theoretically demonstrated the random motion effect (2, 12). This
was also demonstrated using oscillating phantoms experimentally
(13-15). Under this assumption, a Gaussian kernel was applied to
account for the dose distribution blurring effect caused by organ
motion (1, 16). With the 10-Hz real-time tracking data during
radiation therapy, we demonstrated that the simple Gaussian-
shaped operator may need to be modified for prostate motion
because of its specific characteristics. For instance, the higher
magnitude of prostate motion is observed in AP and SI directions
because of the oblique longitudinal movement of respiration on an
organ sitting within the genitourinary diaphragm and confined by
the bladder superiorly and the rectum inferiorly. It is also possible
that the muscles making up the pelvic floor may limit prostate
motion, mainly in the oblique direction. Indeed, this effect is also
observed by other researchers previously. Using kV fluoroscopy,
Adamson andWu reported a population mean of 0.1-, 0.5-, and 0.6-
mm motion in the RL, AP, and SI axes, respectively (17, 18). Using
gold seed fiducial markers, Quan et al observed the mean intra-
fraction prostate displacements were�0.03, 0.21, and�0.86mm in
RL, AP, and SI directions, respectively (19). Using Calypso, Wil-
loughby et al reported prostate displacements of 0.9 � 0.35 mm,
3.61� 3.13 mm, and 3.92� 4.32 mm in RL, AP, and SI directions,
respectively (9). Our results are consistent with the previous clin-
ical reports and suggest that a modified operator should be used to
account for the spatial variation of organ motion.

The visual correlation of AP and SI directions has been re-
ported using Calypso electromagnetic tracking system. Kupelian
et al reported that a visual review of 1157 fractions of tracking
data reveals that the longitudinal (SI direction) and vertical (AP
direction) data tend to move together over the tracking session,
consistent with the prostate motion being affect by bladder and
rectum filling (8). Likewise, we quantified the level of correlation
and found about 61% of the tracking data exhibiting strong to
medium correlation in AP and SI directions. This conclusion
demonstrated that PTV may be reduced in RL direction
independently.

Our findings of non-Gaussian prostate motion on an individual
and population level are likely a result of the anatomical design of
the pelvic floor. The pelvic floor is constituted by the pelvic
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diaphragm, which is shaped like a funnel, with muscular partitions
caused by the levator ani and the coccygeus muscle. The levator ani
is further subclassified into the iliococcygeus, pubococcygeus, and
puborectalis muscles. All 3 of these muscles run horizontally from
an AP direction and are situated laterally to the prostate to form
a sling around the prostate (Appendix A, Fig 1). It is possible that
because of this sling formation around the prostate motion, the
prostate is limited to motion mainly in the AP and SI directions.
Laterally, the muscles may limit this motion. The muscular
construct of the pelvic floor is one possible explanation of our
findings. It is likely that respiration causes motion of the prostate in
the SI direction, whereas the anterior deflection of the rectum
deflects this motion towards the SP direction. Another explanation
may be that the bladder located superiorly and the rectum located
posteriorly, both of which are compressible organs, may also allow
for the SI directional movement of the prostate because of respi-
ration to be deflected in an AP direction, especially if the bladder
and rectum are full. Hence, this could also cause the prostate to
exhibit more of an oblique motion as noted in our findings. Further
work by our group is ongoing to assess the impact of respiration and
may provide us with further insights about the physiological
process that lead to the oblique motion patterns noted in our study.

Conclusion

Prostate motion cannot be accurately described using Gaussian
distribution, disregarding the spatial characteristic of the organ
motion. The high-frequency, real-time treatment tracking data
indicate that the prostate motion is highly correlated in the AP and
SI directions, indicating an oblique motion preference. In addition,
the spatial distribution of prostate motion is elongated in an
oblique direction at the individual fraction level, individual patient
level, and population level. Future dosimetric kernel’s modeling
prostate motion will need to be modified.
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Purpose: The study aims to investigate whether Nakagami parameters—estimated from the statistical
distribution of the backscattered ultrasound radio-frequency (RF) signals—could provide a means for
quantitative characterization of parotid-gland injury resulting from head-and-neck radiotherapy.
Methods: A preliminary clinical study was conducted with 12 postradiotherapy patients and 12
healthy volunteers. Each participant underwent one ultrasound study in which ultrasound scans were
performed in the longitudinal, i.e., vertical orientation on the bilateral parotids. For the 12 patients, the
mean radiation dose to the parotid glands was 37.7 ± 9.5 Gy, and the mean follow-up time was 16.3 ±
4.8 months. All enrolled patients experienced grade 1 or 2 late salivary-gland toxicity (RTOG/EORTC
morbidity scale). The normal parotid glands served as the control group. The Nakagami-scaling and
Nakagami-shape parameters were computed from the RF data to quantify radiation-induced parotid-
gland changes.
Results: Significant differences in Nakagami parameters were observed between the normal and
postradiotherapy parotid glands. Compared with the control group, the Nakagami-scaling parameter
of the postradiotherapy group decreased by 25.8% (p < 0.001), and the Nakagami-shape parameter
decreased by 31.3% (p < 0.001). The area under the receiver operating characteristic curve was 0.85
for the Nakagami-scaling parameter and was 0.95 for the Nakagami-shape parameter, which further
demonstrated the diagnostic efficiency of the Nakagami parameters.
Conclusions: Nakagami parameters could be used to quantitatively measure parotid-gland injury
following head-and-neck radiotherapy. Moreover, the clinical feasibility was demonstrated and this
study provides meaningful preliminary data for future clinical investigation. © 2014 American Asso-
ciation of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4862507]

Key words: ultrasonic tissue characterization, Nakagami imaging, radiation toxicity, parotid gland,
xerostomia, head-and-neck cancer

1. INTRODUCTION

The Nakagami distribution is a statistical tool that has been
applied in the context of ultrasonic imaging to characterize the
biomechanical properties of backscattered radio-frequency
(RF) signals from biological tissues. Relatively new, ultra-
sonic tissue characterization using Nakagami statistics has
shown early success in the detection of organ abnormalities,
such as those of the breast1, 2 and liver.3 The purpose of this

study is to evaluate the ability of Nakagami statistics to nonin-
vasively determine and quantify parotid-gland injury follow-
ing head-and-neck cancer radiotherapy.

Parotid-gland injury is a prevalent side effect suffered by
many patients receiving head-and-neck cancer radiotherapy.
In the multidisciplinary approach to treating head-and-neck
cancer, radiotherapy (RT) plays an essential role in improv-
ing locoregional tumor control and overall survival. How-
ever, radiotherapy is frequently associated with acute and
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chronic complications.4 One of the most prevalent and dis-
tressing side effects is xerostomia (dry mouth), secondary
to radiation-induced parotid-gland injury.5 Xerostomia causes
pain, difficulty in speech and swallowing, and increased rates
of dental caries and oral infection. Although recognized for
decades, diagnostic tools to objectively measure radiation-
induced parotid-gland injury are still limited in the clinic.

Several imaging studies have been conducted using CT,
MRI, MR sialography, PET scintigraphy, and ultrasound to
evaluate the severity of salivary-gland injury;6–13 each imag-
ing modality shows some degree of success. Volume re-
duction of parotid glands after radiotherapy has been ob-
served with CT and MRI. MR sialography was proposed as
a functional imaging tool to assess the salivary ductal flow.
Astrinidou et al. demonstrated, in a pilot study of nine
patients, that MR sialography can depict radiation-induced
changes to the salivary glands and ducts post-RT without
the use of any contrast medium or stimulation. Wada et al.
measured the salivary secretion function response to salivary
secretion stimulation in a perspective study of 16 patients
before and after head-and-neck cancer RT, and found irradi-
ated salivary gland had strong influence on the clinical sever-
ity of xerostomia. Another promising imaging technology is
salivary-gland scintigraphy with 99 mTc-pertechnetate. Saliv-
ery gland scintigraphy is a PET imaging technique that can
provide a detailed functional evaluation of salivation as it
measures the amount and speed of radioisotope uptake and
excretion of the major glands. Buus et al. showed individual
radiation response of parotid glands using dynamic PET. In
recent years, several groups have reported ultrasound stud-
ies on radiation-induced parotid-gland injury. In conventional
B-mode studies, increased heterogeneity was reported in the
post-RT parotid glands.14 In the Doppler study of late toxicity
in parotid glands, significant differences were demonstrated in
the high peak systolic velocity, resistive index, and pulsatility
between postirradiation and healthy parotid glands.7, 15 Com-
pared with CT, MR, MR sialography, and PET scintigraphy,
ultrasound imaging of the parotid glands has its unique ad-
vantages, such as being the safest (nonradiation), fastest (5–
10 min scan) and most cost-effective imaging modality.

Recently, our group conducted a series of ultrasound stud-
ies to explore statistical methods of quantitatively character-
izing ultrasound images of parotid glands. Based on B-mode
images, we demonstrated that first-order statistical features
derived from the echo histogram16 and second-order statisti-
cal texture features based on the gray level co-occurrence ma-
trix (GLCM) could provide quantitative measures of postra-
diotherapy parotid injury.17 Herein, we describe our current
efforts in developing a Nakagami method based on analy-
sis of the backscattered RF signals. Similar to previous B-
mode based statistical methods, the Nakagami method pro-
vides quantitative measures of parotid changes induced by ra-
diation. Distinct from the B-mode based methods, the Nak-
agami approach reveals the biomechanical properties of tis-
sue microstructures, such as the arrangement and concentra-
tion of scatterers. In addition, Nakagami parameters are less
dependent on system parameters, such as dynamic range and
time-gain compensation.18

We have conducted a clinical study to test the feasibil-
ity of using Nakagami parameters to detect radiation-induced
parotid-gland injury. This paper describes ultrasound exami-
nation of the parotid glands, summarizes the Nakagami statis-
tical model, details the data processing procedures, and then
presents the Nakagami parameter results of post-RT parotid
glands. The Nakagami parameters of post-RT parotid glands
were compared with a group of healthy controls.

2. MATERIALS AND METHODS

2.A. Patient population and treatment

Between January 2011 and March 2012, we enrolled 24
participants (including 12 healthy volunteers and 12 patients
post-RT for head-and-neck malignancies). Our institutional
review board approved this study, and written informed con-
sent was obtained from all participants. The eligibility crite-
ria for both healthy volunteers include: (1) Participants must
be ≥18 years of age. (2) No prior radiotherapy to the head
and neck or surgery to the head and neck for any reason.
(3) No prior malignancies or chemotherapy. (4) No sali-
vary gland malignancy. (5) No salivary gland disease, e.g.,
Sjögren’s syndrome. The eligibility criteria for the post-RT
patients include: (1) Participants must be ≥18 years of age;
(2) Biopsy-confirmed histological diagnosis of squamous cell
carcinoma of the oropharynx, hypopharynx, larynx, or pa-
tients with unknown primary tumor with unilateral metas-
tases to the neck nodes; (3) Radiation volume ≥80% of major
salivary glands (parotids); (4) No salivary gland malignancy;
(5) No salivary gland disease, e.g., Sjögren’s syndrome; and
(6) Clinically confirmed xerostomia.

All 12 patients developed Grade 1 (mild dry-mouth, eight
patients) or Grade 2 (medium dry-mouth, four patients) post-
RT xerostomia. Xerostomia was patient-reported and its level
was evaluated using the standard RTOG/EORTC grading
system. The 12 post-RT patients ranged in age from 41 to
65 years (mean: 55.4 ± 8.6 years). They include ten males and
two females with primary tumor sites in the oral cavity (six
patients), oropharynx (three patients), larynx (one patient),
and nasopharynx (one patient). All patients had previously re-
ceived RT for their primary tumors and the radiation regions
involved the bilateral neck. The cross-sectional study is based
on late toxicity, and all patients were scanned between 1 and
2 years post-RT.

Serving as the control group for the study, the healthy sub-
jects (seven males and five females) ranged in age from 27 to
67 years (mean: 51.0 ± 12.0 years). The exclusion criteria for
the control group included subjects with a clinical history of
salivary gland diseases or head-and-neck cancers. Thus, the
concept of using the Nakagami statistical model to evaluate
radiation-induced parotid-gland injury was tested with a total
of 24 post-RT and 24 normal parotid glands.

2.B. Data acquisition

Each participant underwent one ultrasound study of his/her
right and left parotid glands. As described in the previous
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report, we established a standardized protocol for ultrasound
scanning of the parotid glands.17 All ultrasound studies were
performed using a clinical scanner (SonixTouch, Ultrasonix,
British Columbia, Canada) with a linear array transducer
(L14-5/38 probe, 128 elements). All ultrasound data were ac-
quired with the same settings: 10 MHz frequency, 1.00 cm fo-
cal length, 3 cm depth, 72% gain, and 80-dB dynamic range.
The frequency bandwidth of the transducer is 14–5 MHz; its
wavelength at 10 MHz is 0.154 mm; and the incident pulse
length is around 0.3 mm. The time-gain-compensation (TGC)
was set to the maximum value for all depths. All participants
were scanned in the upright seated position, and ultrasound
scans of the bilateral parotids were performed in the longi-
tudinal (vertical) orientation. During the ultrasound scan, a
thin layer of ultrasound gel was used to ensure good coupling
between the face and the ultrasound probe. The probe was
placed perpendicular to the scan surface with minimal pres-
sure applied to the face.

During the ultrasound examination, B-mode images of the
parotid glands and their corresponding RF echo signals were
acquired simultaneously. All B-mode images were saved in
8-bit gray scale, with intensity ranging from 0 to 255. Each
B-mode image contained 488 (width) × 356 (depth) pixels,
and the image size was 3.8 cm (width) × 3.0 cm (depth). In
this report, all B-mode images and corresponding parameter
images were displayed to the depth of 2 cm since the thick-
ness of the parotid gland was less than 1.5 cm. All RF data
were acquired at 20 MHz sampling frequency. Each image
frame contained 256 scan lines and 784 sample points/line.
The Nakagami parameters were generated from the RF
signals.

2.C. Data analysis—The Nakagami statistical model

The Nakagami analysis was applied to the envelope of
the backscattered RF echo signals. The theoretical frame-
work for Nakagami imaging relates statistical parameters to
properties of the examined tissue.19–21 The formulation treats
the backscattered ultrasound envelope signals as random sig-
nals. Our analysis characterizes tissue structures in terms
of a stochastic probability distribution function (PDF) un-
der the Nakagami statistical model. The PDFs of the ultra-
sonic backscattered envelope X under the Nakagami statistical
model are given by

f (x) = 2uu

�(u)ωu
x2u−1 exp

(
− u

ω
x2

)
· W (x), (1)

where �( · ) is the gamma function and W (·) is the step
function.

The Nakagami distribution has two parameters: a scaling
parameter and a shape parameter. Let E( · ) denote the statis-
tical mean. The Nakagami scaling parameter ω is obtained
from the following equation:

ω = E(X2). (2)

The Nakagami shape parameter u is estimated from the sec-
ond and fourth moments of the backscattered envelopes. The

Nakagami shape parameter u is obtained from the following
equation:

u = E2[X2]

E[X2 − E2(X2)]2
. (3)

The Nakagami u is a shape parameter for the PDF. When
u = 1, the Nakagami distribution reduces to a Rayleigh dis-
tribution. When 0 ≤ u < 1, the envelope distribution is con-
sidered to be pre-Rayleigh. When u > 1, the distribution con-
forms to post-Rayleigh. This property makes the Nakagami
distribution a general model for ultrasonic backscattering.

When the region of interest (ROI) contains randomly
located scatterers with varying scattering cross sections,
the envelope statistics are likely to be pre-Rayleigh, and
Nakagami-shape parameter u is typically between 0.5 and
1.22 Similarly, when some spatial periodicity exists among the
scatterers within the resolution cell, then the envelope statis-
tics are post-Rayleigh, and u becomes larger than unity.23

Typically, u is used as a means to quantify the effective num-
ber of scatterers in the resolution cell. This interpretation can
be obtained by noting that the random variable Y = X2 follows
a gamma distribution, and interpreting the physical relation-
ships between u and the effective number obtained from the
gamma distribution.24

We have developed Nakagami statistical analysis proce-
dures to quantitatively characterize the parotid glands. The
procedures were carried out through an in-house MATLAB R©

(Mathworks, Inc., Natick, MA) software routine; Fig. 1 is a
diagram showing the sequence of operations in our method.

� Step 1: The first step is a B-mode display either from
the saved B-mode image file or a digital reconstruction
of the B-mode image from the RF data. The B-mode
image serves to identify the overall anatomic structures
and guides the ROI selection.

� Step 2: The second step is to determine the ROI for the
Nakagami analysis. The ROI could either be fixed or
chosen by physicians based on their clinical judgment
and need. In this proof of principle study, we used a fixed
ROI, which is the region of the entire parotid gland con-
toured. For future studies, physicians could identify an

FIG. 1. Diagram showing Nakagami parameter characterization procedures.
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ROI, e.g., in the high radiation dose region where radi-
ation damages are expected. We note that the accuracy
of the parotid-gland Nakagami imaging depends on the
accuracy of parotid-gland contour. In this study, an ex-
perienced radiologist (S.T.) contoured all parotid glands
on the B-mode images. The radiologist was blinded to
the Nagkagami-parameter images to eliminate any pos-
sible bias. The parotid glands are superficial structures
wrapping around the mandibles and are often clear on
the ultrasound B-mode images. In an earlier study, we
demonstrated the interobserver and intraobserver relia-
bility of manual contouring of the parotid glands.17

� Step 3: We reconstruct ultrasound envelope images by
applying the Hilbert transform to the sampled RF sig-
nals. The ultrasonic Nakagami parameter images are
generated using a square sliding window to process the
envelope signals of the whole 2D ultrasound image. The
window size is important in Nakagami parameter cal-
culation and determines the resolution of the Nakagami
images. There is a trade-off between the resolution and
statistical stability of the Nakagami estimation. A previ-
ous study suggested that the appropriate sliding window
length should be equal or higher than three times the
pulse length of the incident ultrasound. In the context
of evaluating parotid-gland injury, the resolution is not
a major concern. The challenge presented here was to
capture the subtle changes induced by radiation and the
statistical stability was crucial. Therefore, we used a rel-
atively larger sliding window size of 1.5 mm × 1.5 mm
(37 samples points by 10 lines) to generate Nakagami
parameter images, which is 5 times the pulse length to
ensure the statistical stability. The sliding window was
moved at 1 pixel/point along the depth. With each slid-
ing window, Nakagami scaling and shape parameters
were computed through Eqs. (2) and (3).

� Step 4: We calculate the mean and standard deviation
of the Nakagami scaling and shape parameters for the
contoured ROI or the parotid gland. The performance
of using the Nakagami parameters to discriminate the
normal parotids and irradiated parotids were evaluated
using the probability value (i.e., p value) calculated from
the unpaired t-test.

3. RESULTS

We first present two illustrative cases, one healthy volun-
teer and one post-RT patient, to show how Nakagami parame-
ters can be employed to assay radiation-induced parotid-gland
changes. Figures 2(a) and 2(b) show the ultrasound images of
the right and left parotid glands of a 40-year-old healthy vol-
unteer. On the B-mode image, the parotid glands, contoured in
dotted yellow lines, are visualized and exhibit homogeneous
echo texture. Figures 3(a) and 3(b) show the B-mode images
of the right and left parotid glands of a 63-year-old woman
postradiotherapy. She received external beam radiation treat-
ment between March and May 2009 for squamous cell carci-
noma of the mandibular gingiva. The primary tumor received
a total dose of 65.0 Gy. The mean radiation dose delivered to

FIG. 2. Ultrasound images of normal parotid glands (between the dotted
yellow lines). The B-mode images of the right parotid gland (a) and the left
parotid gland (b) of a 40-year-old healthy volunteer show homogeneous echo
texture.

the left parotid gland was 30.6 Gy, and to the right parotid
gland was 28.9 Gy. She underwent ultrasound scanning 22
months after treatment completion. At the time of scanning,
she was experiencing moderate (grade 2) xerostomia accord-
ing to the physician’s (J.J.B.) clinical assessment. In contrast
to the normal parotid glands, the irradiated parotid glands

FIG. 3. Ultrasound images of the irradiated parotid glands (between the dot-
ted yellow lines). The B-mode images of the right parotid gland (a) and the
left parotid gland (b) of a 63-year-old woman 22 months post-RT show het-
erogeneous echo texture.
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FIG. 4. Comparison of B-mode image and Nakagami parameter maps of a normal control and a post-RT patient (the parotid glands are between the dotted
yellow lines). Left column (normal parotid gland): (a1) B-mode image of the parotid, (a2) Nakagami-scaling image, and (a3) Nakagami-shape image. Right
column (post-RT parotid gland): (b1) B-mode image of the parotid, (b2) Nakagami-scaling image, and (b3) Nakagami-shape image. The maximum values of
Nakagami scaling and shape parameters were assigned dark red shadings, which changed from blue to red with increasing value. Compared with the control,
decreased Nakagami shape and scaling parameter values were observed in the post-RT patient.

revealed heterogeneity on the ultrasound images. Hypoechoic
(darker) areas and hyperechoic (brighter) lines or spots are
visible on the B-mode images of these parotid glands. The
Nakagami-scaling and Nakagami-shape parameter images of
the right parotid glands were generated according to the al-
gorithmic procedure described above. The mean Nakagami-
scaling parameter values were (3.18 ± 0.71) × 108 for the
normal parotid glands, and (2.36 ± 0.56) × 108 for the irra-
diated parotid glands. The mean Nakagami-shape parameter
values were 1.82 ± 0.26 for the normal parotid glands, and
1.25 ± 0.21 for the irradiated parotid glands. As shown in
Fig. 4, a pseudocolor scale was applied to clearly reveal the
information in the two Nakagami maps. The maximum val-
ues of u and ω were assigned a dark red shading, which
changed from blue to red with increasing value. Decreases
in Nakagami-scaling and Nakagami-shape parameter values
of the post-RT can be seen on the Nakagami-shape and
Nakagami-scaling maps.

We generated the Nakagami scaling and shape images for
all the participants (22 post-RT and 24 normal parotid glands)
and calculated the average and the standard deviation of the
Nakagami parameters of the parotid glands. Since the well-
known study by Eisburch et al. reported that a mean dose of
26 Gy or above to the parotid glands resulted in significant de-
creases in the salivary flow upon stimulation, the mean dose
of 26 Gy has been used as the threshold in radiotherapy.25

Accordingly, we excluded two parotid glands which received
a mean dose less than 26 Gy. Overall, the mean radiation
dose of the 22 parotid glands was 37.7 Gy (range: 27.9–
66.0 Gy). The mean follow-up period between the comple-
tion of RT and the ultrasound scan was 16.3 months (STD
= 4.8 months, range 13.3–23.9 months). Table I shows the
Nakagami-scaling and Nakgami-shape parameter values of
the normal and post-RT groups. Compared with the control
group, the Nakagami-scaling parameter of the post-RT group
decreased by 25.8% (p < 0.001), and the Nakagami-shape

TABLE I. Nakagami parameters (mean ± standard deviation) of the control and post-RT groups.

Nakagami parameters Control group (n = 24) Post-RT group (n = 22) Percentage change p value

Scaling parameters (108) 3.18 ± 0.71 2.36 ± 0.56 −25.8% <0.001
Shape parameters 1.82 ± 0.26 1.25 ± 0.21 −31.3% <0.001
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FIG. 5. ROC curves of the Nakagami-scaling parameter (a) and Nakagami-shape parameter (b).

parameter decreased by 31.3% (p < 0.001). Statistical anal-
yses confirmed significant differences between post-RT and
normal parotid glands in both Nakagami parameters.

The predictive discriminatory powers on the parotid gland
injury of the two Nakagami parameters were further analyzed
with receiver operating characteristic (ROC) curves. The di-
agnostic accuracy of Nakagami parameters was measured by
calculating its sensitivity and specificity, as shown in Fig. 5.
For the Nakagami-scaling parameter, the cutoff value in the
ROC curves, estimated by maximizing both sensitivity and
specificity, was 2.74 × 108 and its area under the ROC curve
was 0.81. For the Nakagami-shape parameter, the cutoff value
for the Nakagami-shape parameter was 1.57 and the area un-
der the ROC curve was 0.95.

4. DISCUSSION

The use of radiotherapy to treat head-and-neck cancer of-
ten involves radiation exposure to the parotid glands, which
frequently leads to the debilitating and long-term side ef-
fect xerostomia. In this study, we have developed Nakagami-
statistical-analysis procedures to evaluate parotid-gland in-
jury associated with head-and-neck cancer radiotherapy. The
premise behind our Nakagami-parameter method is that high
doses of radiation alter the structural and morphological char-
acteristics of the parotid glands, and that these alterations can
cause observable changes in the Nakagami parameters.

Nakagami-scaling and Nakagami-shape parameters, es-
timated from the statistical distribution of the ultrasonic
RF signals backscattered from tissues, were employed as
a means for characterizing the biomechanical properties of
the parotid glands. In this pilot study of 24 participants,
we have demonstrated its clinical efficacy in characterizing
radiotherapy-associated parotid-gland injury. Compared with
the control group, significant decreases in Nakagami-scaling
and Nakagami-shape parameters were observed in irradiated

parotid glands. Histologically, normal parotid glands consist
entirely of serous cells—with densely packed translucent se-
cretory granules.5, 26–29 These densely packed cells and gran-
ules provide uniform and highly reflective interfaces for the
ultrasound beams,30 accounting for the homogeneous and hy-
perechoic appearance of the normal parotid glands. There-
fore, the Nakagami-scaling parameter, which is the power of
the mean envelope intensity, is higher for the normal parotid
gland than the irradiated gland. Following head-and-neck
radiotherapy, radiation-induced chronic sialadenitis, with
inflammatory infiltrate and fibrosis was reported in the irra-
diated parotid glands.27, 31–33 Compared with normal tissues,
fibrotic tissues are associated with increased sound speed and
density, which make the scatterers exhibit a higher degree
of variability. Previous studies have shown that fibrotic tis-
sues tend to have the backscattered statistics of pre-Rayleigh
distribution.3, 34 With the higher intensity variation resulting
from inflammation and fibrosis, the Nakagami-shape param-
eter shows a decreasing trend postradiation.

Despite large patient-to-patient variation, the Nakagami
parameters were able to detect radiation-induced parotid-
gland injury. With an area under the ROC curve of 0.81, the
Nakagami-scaling parameter had good diagnostic accuracy in
detecting radiation-induced parotid injury. With an area un-
der the ROC of 0.95, the Nakagami-shape parameter had an
excellent accuracy in the diagnosis of parotid-gland injury.
One of the 12 enrolled patients was a 70-year male with squa-
mous cell carcinoma of the oropharynx. Between November
and December 2009, he received 70 GY to the primary tu-
mor; his right parotid gland received 0 Gy radiation while his
left parotid gland received a mean dose of 27.2 Gy. He subse-
quently developed Grade 1 xerostomia and the parotid glands
were scanned with ultrasound during his 1-year follow-up
(Fig. 6). Compared with the nonirradiated right parotid gland,
the Nakagami-scaling parameter of the irradiated left parotid
gland decreased by 22% (right parotid: ω = 2.79 × 108, left
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FIG. 6. A 70-year-old patient with squamous cell carcinoma of oropharynx cancer who has received 70 Gy to the primary tumor. The mean dose to the right
parotid was 0 Gy and the mean dose to the left parotid gland was 27.2 Gy.

parotid: ω = 2.18 × 108) and the Nakagami-shape parame-
ter of the left parotid gland decreased by 35% (right parotid:
u = 1.70, left parotid: u = 1.11).

The Nakagami statistical analysis method utilizes RF sig-
nals obtained from the clinical ultrasound scanner, and this
study’s findings are consistent with those of previous B-mode
based ultrasound studies.7, 14, 15, 35, 36 We should note that our
Nakagami-parameter analysis, B-mode image and Doppler
method are in general independent and complementary. B-
mode image provides evidence of the anatomical changes and
Power Doppler method provides evidence of the blood-vessel
abnormalities of the parotid-gland. Yet Nakagami-parameter
imaging has several advantages over the conventional B-mode
based studies. As described in the theoretical framework,19

the backscattered ultrasound RF signals depend on the biome-
chanical properties (arrangement and concentrations) of the
tissue microstructures. Nakagami distribution provides a gen-
eral model that describes the RF signals; therefore Nakagami
parameters provide measures of these biomechanical prop-
erties. Moreover, Nakagami distribution describes the statis-
tics of ultrasound signals. Nakagami parameters yield more
consistent measures that are independent of system factors
such as dynamic range and system gain.18 Furthermore, Nak-
agami parameters enable extraction of the weak scattering in-
formation that may be lost in the conventional B-mode image
interpretation.18 Such subtle changes may be critical in cap-
turing radiation-induced tissue changes.

While this report has addressed parotid-gland toxicity as-
sessment in head-and-neck radiotherapy, the underlying prin-
ciples and analyses are applicable to assays of other or-

gans, such as the breast and prostate. For future work, we
will continue to enroll patients in our clinical study, and we
will investigate the correlations between Nakagami-parameter
measured parotid injuries with treatment factors (i.e., ra-
diation dose) and clinical endpoints (i.e., patient-reported
xerostomia).

5. CONCLUSIONS

Nakagami statistical analysis, which complements con-
ventional B-mode imaging, has the potential of providing
key imaging signatures for ultrasonic characterization of
radiation-induced changes in the parotid glands. These pro-
cedures remove measurement artifacts and provide objec-
tive quantitative, statistical descriptions of tissue microstruc-
tures. This pilot study demonstrated the clinical feasibility and
significant differences in Nakagami-shape and Nakagami-
scaling parameters of the parotid glands between healthy vol-
unteers and post-RT groups. Ultrasound Nakagami parame-
ters provide statistical features of the parotid tissues. Nak-
agami methods may provide a useful metric of parotid-gland
injury secondary to radiation that can be further developed
into a low-cost tool for normal-tissue assessment following
head-and-neck radiotherapy.
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Diagnostic Accuracy of Ultrasonic
Histogram Features to Evaluate

Radiation Toxicity of the
Parotid Glands:
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Rationale and Objectives: To investigate the diagnostic accuracy of ultrasound histogram features in the quantitative assessment of

radiation-induced parotid gland injury and to identify potential imaging biomarkers for radiation-induced xerostomia (dry mouth)—the
most common and debilitating side effect after head-and-neck radiotherapy (RT).

Materials and Methods: Thirty-four patients, who have developed xerostomia after RT for head-and-neck cancer, were enrolled.

Radiation-induced xerostomiawas defined by the Radiation TherapyOncologyGroup/EuropeanOrganization for Research and Treatment
of Cancer morbidity scale. Ultrasound scans were performed on each patient’s parotids bilaterally. The 34 patients were stratified into the

acute-toxicity groups (16 patients,#3months after treatment) and the late-toxicity group (18 patients, >3 months after treatment). A sepa-

rate control group of 13 healthy volunteers underwent similar ultrasound scans of their parotid glands. Six sonographic features were

derived from the echo-intensity histograms to assess acute and late toxicity of the parotid glands. The quantitative assessments were
compared to a radiologist’s clinical evaluations. The diagnostic accuracy of these ultrasonic histogram features was evaluated with the

receiver operating characteristic (ROC) curve.

Results: With an area under the ROC curve greater than 0.90, several histogram features demonstrated excellent diagnostic accuracy for
evaluation of acute and late toxicity of parotid glands. Significant differences (P < .05) in all six sonographic features were demonstrated

between the control, acute-toxicity, and late-toxicity groups. However, subjective radiologic evaluation cannot distinguish between acute

and late toxicity of parotid glands.

Conclusions: Wedemonstrated that ultrasound histogram features could be used to measure acute and late toxicity of the parotid glands

after head-and-neck cancer RT, which may be developed into a low-cost imaging method for xerostomia monitoring and assessment.

Key Words: Xerostomia; ultrasound; parotid gland; radiation toxicity; sonographic features.
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erostomia (dry mouth) is a common, often perma-

nent, and debilitating morbidity of radiotherapy

(RT) for head-and-neck malignancies (1,2). Patients

with severe xerostomia have thick secretions, difficulty in

swallowing and speaking, and are at high risk for oral

infection and dental caries (3). This symptom burden impairs

the quality of life (QoL) of many head-and-neck cancer

survivors for months, even years, after treatment (4). It is

well established that the main cause of RT-induced xerostomia

is irradiation of parotid glands—the major salivary glands

producing �60% of total saliva (1). Recent clinical studies

indicate that intensity-modulated radiotherapy (IMRT) pro-

vides a significant advantage in sparing the parotid glands
1
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and reducing xerostomia. However, even with the new tech-

nology, 17%–30% of patients treated with IMRT still develop

permanent xerostomia. There is substantial heterogeneity in

parotid gland injury after radiation (5–7).

In the clinic, radiation-induced xerostomia is assessed using

patient-based or physician-based grading systems. For example,

the Radiation Therapy Oncology Group (RTOG) and the

European Organization for Research and Treatment of Cancer

(EORTC) established a morbidity scale to evaluate post-RT

salivary glands. Specifically, salivary gland toxicity was divided

into two categories: acute (#3 months after RT) toxicity and

late (>3 months after RT) toxicity. Physicians assign a score

of grade 1 (slight dryness) to grade 4 (necrosis or fibrosis) for

acute or late salivary toxicity (8). Such subjective measures of

radiation toxicity are prone to intraobserver and interobserver

variability. In recent years, many groups have been investigating

imaging technologies to evaluate parotid gland injury induced

by radiation. Studies using computed tomography (CT), mag-

netic resonance imaging (MRI), MR sialography, and single-

photon emission computed tomography scintigraphy have

shown some degree of success in assessing the severity of parotid

gland injury and documenting normal tissue response to RT

(9–17). However, the high cost, the technical complexity,

and the need for dedicated imaging expertise (CT, MRI,

or nuclear medicine) preclude their use in routine clinical

assessment of xerostomia.

The concept of ultrasound imaging to evaluate parotid

gland injury is especially attractive because ultrasound is safe,

portable, widely available, easy to use, and cost effective. In

particular, because parotid glands are superficial structures

wrapping around the mandible, they are readily amenable to

ultrasound examination. Ultrasound, therefore, is the standard

imaging modality in the assessment of salivary gland diseases

such as neoplasms, Sjogren syndrome, sialadenitis, and sialolo-

thiasis. However, there is limited information in the literature

about evaluation of radiation-induced parotid gland injury or

xerostomia using ultrasound (9). Previously, we have proposed

an ultrasound technology based on quantitative analysis of

echo-intensity histogram to assess RT-associated parotid gland

injury (18). A family of sonographic features was derived from

the echo histogram to quantify the echogenicity and hetero-

geneity of parotid glands, which is used to assess the morpho-

logic and architectural integrity of post-RT parotids. In a pilot

study of 12 patients, we demonstrated the clinical feasibility of

using these echo histogram features in evaluating parotid gland

toxicity after RT (18).

Another appealing factor of ultrasound histogram evalua-

tion of RT-related parotid gland toxicity is that it could elim-

inate variations in subjective radiologic interpretations of

ultrasound images. To further explore this ultrasound technol-

ogy in the evaluation of RT-induced parotid gland injury, we

embarked on this clinical study. The primary objective was to

determine the diagnostic accuracy of echo-intensity histo-

gram parameters in the assessment of RT-induced parotid

gland injury. In addition, we compared the quantitative ultra-

sound examination with radiologists’ evaluation of acute and
2

late toxicities of RT to parotid glands. Special emphasis was

placed on acute toxicity for patients within 3months of cancer

treatment. We want to emphasize the importance of devel-

oping safe and easy ultrasound technology to detect acute

toxicity because early detection of parotid gland injury could

enable early interventions to minimize long-term morbidity.
MATERIALS AND METHODS

Study Population

The study was approved by our institutional review board and

in compliance with the Health Insurance Portability and

Accountability Act. The eligibility criteria for post-RT

patients included 1) patients aged $18 years; 2) biopsy-

confirmed histologic diagnosis of squamous cell carcinoma

of oropharynx, hypopharynx, larynx, or patients with

unknown primary tumor with unilateral metastases to neck

lymph nodes; 3) radiation volume $80% of major salivary

glands (parotids) and $27 Gy delivered to parotid glands; 4)

no salivary gland malignancy; 5) no salivary gland disease,

for example, Sjogren syndrome; and 6) clinically confirmed

xerostomia based on the RTOG/EORTC acute- and late-

toxicity scoring scheme. We have also enrolled a normal con-

trol group, and the eligibility criteria for healthy volunteers

included 1) participants aged$18 years; 2) no prior RTor sur-

gery to head and neck for any reason; 3) no prior malignancies

or chemotherapy; 4) no salivary gland malignancy; and 5) no

salivary gland disease, for example, Sjogren syndrome.

We stratified our post-RT patients into the acute-toxicity

and late-toxicity groups. In general, radiation toxicity is

divided into two categories: acute (early) and chronic (late)

toxicity (19). Acute toxicity is defined as toxicity occurring

within the first 3 months of treatment completion, whereas

late toxicity is defined as toxicity occurring beyond 3 months

after treatment. RT-induced salivary injury is a complex pro-

cess and evolves through phases (8). During the early course of

RT (often 4–6 weeks), most patients may experience acute

salivary gland swelling and pain. A reduction in salivary func-

tion can begin within 1 week of RTand usually persists after-

ward (20). For some patients, salivary function gradually

recovers within 1–2 years after RT. And for others, acute

salivary toxicity may progress to chronic radiation-induced

sialadenitis and fibrosis.
Ultrasound Imaging Protocol

As described in previous reports, we established a standardized

protocol for ultrasound scanning to facilitate quantitative eval-

uation of parotid glands (18,21). In brief, ultrasound studies

were performed using a clinical scanner (SonixTouch;

Ultrasonix, British Columbia, Canada) with a linear array

transducer (L14-5/38 probe, 128 elements). All ultrasound

B-mode images were acquired with the same settings:

10-MHz center frequency, 1.00-cm focal length, 3-cm depth,

72% gain, 31 frames per second, and 80-dB dynamic range.
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The standard B-mode image consists of 256 levels in gray

scale.

Each participant underwent one ultrasound study of the

bilateral parotid glands. All participants were scanned in the

upright seated position, and longitudinal (vertical) ultrasound

scans were performed on the bilateral parotids. During the

ultrasound scan, a thin layer of ultrasound gel was used to

ensure good coupling between the face and the ultrasound

probe. The probe was placed perpendicular to the scan surface

with minimal pressure applied to the face.
Figure 1. Echo-intensity histogram: histogram parameters quantify
the intensity distribution of the parotid gland.
Echo-Intensity Histogram Analysis of the Parotid Gland
Ultrasound Image

The sonographic features were derived from the echo-

intensity histograms to quantitatively characterize the integ-

rity of the parotid glands. The echo histogram presents a

graphical distribution of the pixel intensities within the region

of interest. All parotid glands were contoured by a radiologist

(S.T.). In a previous study, we have shown that interobserver

and intraobserver agreement was excellent in contouring

parotids (18). The echo-intensity histograms and sonographic

features used to assess radiation damage to the parotid glands

were generated by in-house signal processing software written

in MatLab (Mathworks, Natick, MA).

As described in the previous article (18), six sonographic

features were computed from the histogram to provide addi-

tional quantification of the echogenicity and heterogeneity of

the parotid glands (Fig 1). These can be summarized briefly as

follows: The Ipeak is the peak intensity value of the histogram.

W-3 dB is the �3 dB intensity width of the histogram. Wlow

andWhigh capture the width of the low-intensity (<50% Ipeak)

and the high-intensity (>50% Ipeak) portions of the histogram,

respectively. Alow and Ahigh characterize the area under the

low-intensity and high-intensity portions of the curve. These

sonographic features provide quantitative measures of the

echogenicity (Ipeak), homogeneity (W-3 dB), and heterogene-

ity (Wlow,Whigh, Alow, and Ahigh) of parotid glands. All histo-

grams are normalized to the peak intensity Ipeak. In other

words, all probability distribution is divided by the maximum

probability value at Ipeak.
Subjective Radiologic Evaluation

An experienced radiologist (S.T. with over 10 years’ experi-

ence), blinded to the ultrasound histogram findings, retro-

spectively evaluated all the ultrasound images and classified

the echogenicity of the glands as hypoechoic (lower intensity),

isoechoic, or hyperechoic (higher intensity) to adjacent

musculature. The echotexture heterogeneity was assessed

and classified as mild, moderate, or severe heterogeneity.
Statistical Analysis

Radiologic evaluations of the echogenicity and heterogeneity

were compared using the chi-squared test among various
groups. Analysis of variance, Kruskal–Wallis test, orWilcoxon

rank sum test were used to compare each of the six sono-

graphic features among various groups.

The predictive discriminatory powers on patient’s toxicity

status of the six sonographic features were further analyzed

with receiver operating characteristic (ROC) analysis (22).

The ability of these sonographic features to predict toxicity

status was determined using ROC curves and measuring the

area under the curve (AUC). Whether the AUCs of ROC

curves were different from 0.5, which means no ability to pre-

dict toxicity, was tested with chi-squared tests. An AUC value

between 0.8 and 0.9 indicates good accuracy, and an AUC be-

tween 0.9 and 1 indicates excellent accuracy in a diagnostic

test. The diagnostic accuracy of a sonographic feature was

measured by calculating its sensitivity and specificity. The

cutoff value in the ROC curves was estimated while maxi-

mizing both sensitivity and specificity. The significance levels

were set at .05 for all tests. The SAS statistical package V9.3

(SAS Institute, Inc., Cary, NC) was used for all data analysis.
RESULTS

A total of 47 subjects, consisting of 34 post-RT patients and

13 healthy volunteers, were included in this study. The control

group consisted of 13 healthy volunteers (age, 51 � 11 years).

All enrolled patients had received IMRT for head-and-neck

malignancies and were clinically diagnosed with grade 1 or

grade 2 salivary gland toxicity. The 34 post-RT patients

were further stratified into two groups. 1) Acute-toxicity

group: sixteen patients received RT for head-and-neck malig-

nancies within 3 months (age, 62 � 7 years; follow-up time,

1.59 � 0.79 months). For the acute-toxicity group, the

mean dose to the primary tumor was 68.1 � 3.7 Gy, and

the mean dose to the parotid glands was 40.0 � 14.8 Gy. All

patients experienced RTOG grade 1 or 2 acute salivary gland

toxicity. 2) Late-toxicity group: eighteen patients received RT

for head-and-neck malignancies more than 3 months

before imaging (age, 61 � 7 years; follow-up time,
3



TABLE 1. Patient and Treatment Characteristics

Covariate Level

Group, n (%) or Mean (�Standard Deviation)

Acute Toxicity Group (N = 16) Late Toxicity Group (N = 18)

Age 62.3 (�7.7) 60.7 (�7.3)

Gender Female 2 (12.5) 4 (22.2)

Male 14 (87.5) 14 (77.8)

Primary tumor site Head (orbit) 0 (0) 1 (5.6)

Larynx 1 (6.3) 3 (16.7)

Nasal cavity 1 (6.3) 0 (0)

Oral cavity 1 (6.3) 2 (11.1)

Pharynx 3 (18.8) 1 (5.6)

Sinus 2 (12.5) 0 (0)

Tongue 4 (25.0) 6 (33.3)

Tonsil 3 (18.8) 4 (22.2)

Unknown 0 (0) 1 (5.6)

Vocal cord 1 (6.3) 0 (0)

Histology Adenocarcinoma 2 (12.5) 1 (5.6)

Squamous cell carcinoma 13 (81.3) 17 (94.4)

Undifferentiated carcinoma 1 (6.3) 0 (0)

T stage T1 2 (12.5) 3 (16.7)

T2 6 (37.5) 5 (27.8)

T3 2 (12.5) 2 (11.1)

T4 6 (37.5) 6 (33.3)

Tx 0 (0) 2 (11.1)

N stage N0 3 (18.8) 1 (5.6)

N1 1 (6.3) 2 (11.1)

N2 11 (68.8) 11 (61.1)

N3 1 (6.3) 3 (16.7)

Nx 0 (0) 1 (5.6)

M stage M0 14 (87.5) 18 (100)

Mx 2 (12.5) 0 (0)

Concurrent chemotherapy No 4 (25) 1 (5.6)

Yes 12 (75) 17 (94.4)
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20.14� 10.36 months). All patients in this group experienced

grade 1 or 2 late salivary gland toxicity. For the late-toxicity

group, the median radiation dose to the primary tumor was

67.8 � 3.8 Gy, and the mean dose to the parotid glands

was 36.3 � 11.3 Gy. The patient and treatment characteris-

tics—age, follow-up time, gender, primary tumor site, histol-

ogy, stage, and chemotherapy—are summarized in Table 1 for

both acute- and late-toxicity groups.

Ultrasound Images and Histograms: Individual
Subjects

Three representative cases were selected, one from each

group, for presentation as shown in Figure 2.

� Normal case: This case of a 40-year-old healthy volunteer

shows a normal parotid gland that appears homogeneous

and has increased echogenicity relative to adjacent muscle

on the ultrasound image. As described earlier, with the

B-mode echo intensity ranges between 0 and 255, the

histogram reveals a Gaussian (symmetric) distribution
4

centered at the peak intensity of 79. The narrow 3-dB band-

width (W-3 dB = 39) indicates relatively homogenous distri-

bution. The area under the low-intensity portion of the

curve (ie, below Alow) is 5.4, and the area under the high-

intensity portion of the curve (ie, above Ahigh) is 8.3;

whereas the width of the low-intensity portion (Wlow) is

39, and thewidth of the high-intensity portion (Whigh) is 89.

� Case with acute toxicity: This case is a 58-year-old patient

who had completed RT for his laryngeal cancer 1 month

before imaging. He experienced mild xerostomia and was

clinically diagnosed with RTOG grade 1 acute salivary

gland toxicity. On the ultrasound image, the post-RT

looks less homogeneous with multiple hypoechoic areas

which may be due to patches of inflammatory infiltrate.

The histogram reveals a non-Gaussian distribution with

a peak intensity of 30. Compared to the normal parotid

gland, the Ipeak shifted to the lower intensity which may

be mainly due to inflammatory response (darker area in

the ultrasound image). The widened 3-dB bandwidth

(W-3 dB = 43) indicates relatively heterogeneous



Figure 2. Parotid ultrasound images and histograms of three cases: (a) normal case of a 40-year-old healthy volunteer; (b) acute-toxicity case
of a 58-year-old patient with laryngeal cancer, 1 month after radiotherapy (RT); (c) late-toxicity case of a 60-year-old laryngeal cancer patient,

18 months after RT. The dashed yellow lines delineate the parotid glands. Homogeneous texture was observed in the normal parotid gland (a)
and heterogeneous textures in parotid glands with acute toxicity (b) and late toxicity (c).
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distribution. The area under the low-intensity portion of

the curve (ie, below Alow) is 1.9, and the area under the

high-intensity portion of the curve (ie, above Ahigh) is

13.0; whereas the width of the low-intensity portion

(Wlow) is 18, and the width of the high-intensity portion

(Whigh) is 179.

� Case with late toxicity: This case is a 60-year-old patient

who had completed RT for laryngeal cancer 18 months

before imaging. The patient experienced moderate xero-

stomia and was clinically diagnosed with RTOG grade 2

late toxicity of the salivary gland. On the ultrasound image,

the parotid gland exhibits heterogeneous echotexture, iso-

echoic relative to the adjacent muscle, with multiple hyper-

echoic lines and spots interleaved with hypoechoic areas.

The histogram reveals a non-Gaussian distribution with a

peak intensity of 65. The further widened 3-dB bandwidth

(W-3 dB = 75) indicates heterogeneous distribution, which

may be due to the existence of inflammatory and fibrotic

areas. The area under the low-intensity portion of the
curve (ie, below Alow) is 4.1, and the area under the

high-intensity portion of the curve (ie, above Ahigh) is

7.5; whereas the width of the low-intensity portion

(Wlow) is 33, and the width of the high-intensity portion

(Whigh) is 135.
Ultrasound Images and Histograms: Average for Three
Groups

Echo histograms were generated for 26 parotid glands from

the normal control group, 32 from the acute-toxicity group,

and 36 from the late-toxicity group. The means and standard

deviations of the six features from the histograms of the

normal, acute-toxicity, and late-toxicity groups along with

P values are listed in Table 2. All six sonographic features

show significant difference among control, acute-, and late-

toxicity groups; between the control and the acute-toxicity

groups; between the control and the late-toxicity groups

except for Wlow (P value = .404); between the control and
5



TABLE 2. Ultrasound Histogram Features (Mean ± Standard Deviation) of the Control, Acute-, and Late-Toxicity Groups

Group/Parameter Ipeak W-3 dB Alow Ahigh Wlow Whigh

Comparing three groups

Control (N = 26) 77.7 � 4.6 37.9 � 6.8 4.9 � 0.7 7.3 � 1.7 33.3 � 5.7 75.2 � 17.5

Acute toxicity (N = 32) 36.1 � 10.4 45.5 � 10.6 2.9 � 1.0 13.9 � 4.0 18.6 � 5.7 158.5 � 29.8

Late toxicity (N = 36) 61.1 � 15.3 60.5 � 15.7 4.1 � 1.3 16.7 � 4.5 31.58 � 9.29 137.0 � 26.0

P value* <.001 <.001 <.001 <.001 <.001 <.001

Comparing control and irradiated (combined acute and late toxicity) groups

Control (N = 26) 77.7 � 4.6 37.9 � 6.8 4.9 � 0.7 7.3 � 1.7 33.3 � 5.7 75.2 � 17.5

Toxicity (N = 68) 49.4 � 18.2 53.4 � 15.4 3.5 � 1.3 15.4 � 4.4 25.5 � 10.1 147.1 � 29.7

P value* <.001 <.001 <.001 <.001 <.001 <.001

Comparing control and acute-toxicity group

P value* <.001 .008 <.001 <.001 <.001 <.001

Comparing control and late-toxicity group

P value* <.001 <.001 .012 <.001 0.404 <.001

Comparing acute- and late-toxicity groups

P value* <.001 <.001 <.001 .009 <.001 .002

P#0.05 means statistically significant.

*P value is calculated by analysis of variance for Alow, Wlow, and Whigh; Kruskal–Wallis test or Wilcoxon rank sum test for Ipeak, W-3 dB,

and Ahigh.
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the irradiated groups (including acute- and late-toxicity

groups); and between the acute- and the late-toxicity groups.

Figure 3 shows that the average parotid gland echo histograms

of the acute-toxicity group and the late-toxicity group are

different from that of the control group.
Subject Radiologic Evaluations of the B-mode Images
of the Parotid Glands

Subjective radiologic evaluation of the echogenicity and het-

erogeneity is listed in Table 3. Normal parotid glands have

high echo intensity (isoechoic 38% or hyperechoic 62% to

adjacent musculature); whereas the majority of post-RT

glands are hypoechoic to adjacent musculature (50% among

acute toxicity group and 33% among late toxicity group) or

isoechoic (34% among acute-toxicity group and 47 % among

late-toxicity group). The majority of normal parotid glands

look homogeneous (uniform); whereas the post-RT groups

show a trend toward increased heterogeneity (nonuniform).

The majority of normal parotid glands are mildly heteroge-

nous (92%), whereas the majority of post-RT groups are

moderately heterogenous (47% among acute-toxicity group

and 33% among late-toxicity group) or severely heterogenous

(44% among acute-toxicity group and 39% among late-

toxicity group). Echogenicity and heterogeneity are signifi-

cantly different among control, acute-, and late-toxicity

groups; between the control and the acute-toxicity groups;

between the control and the late-toxicity groups; and between

the control and irradiated groups (including acute- and late-

toxicity groups; all P values <.001). Echogenicity and hetero-

geneity are similar between the acute-toxicity group and the

late-toxicity group (P value, .375 for echogenicity and

.144 for heterogeneity). Therefore, subjective radiologic eval-

uation cannot distinguish between the acute- and late-toxicity

groups.
6

Efficiency of Histogram Features: ROC Curves

The ROC analyses to evaluate diagnostic accuracy of

toxicity for the histogram parameters are summarized in

Table 4. All histogram parameters, except for Ipeak and

W-3 dB, have AUCs greater than 0.94 and, therefore, have

excellent diagnostic accuracy in classifying the acute-

toxicity group and the control group. All histogram param-

eters except for Alow and Wlow can differentiate the

late-toxicity group from the control group. All histogram pa-

rameters are useful for correctly classifying patients with

acute toxicity and patients with late toxicity; among them,

Ipeak, Ahigh, and Whigh have excellent diagnostic accuracy.

Overall, all parameters have abilities to predict patient

toxicity (acute or late toxicity) versus normal controls.
DISCUSSION

In this study, we have investigated the diagnostic efficiency of

sonographic features based on echo histograms to characterize

parotid gland injury after RT. These sonographic features

provide quantitative measures of the echo-intensity distribu-

tions of the parotid glands, echogenicity (Ipeak), homogeneity

(W-3 dB), and heterogeneity (Wlow vs.Whigh or Alow vs. Ahigh)

of the parotid glands. Significant differences were observed in

these six histogram features between the control and acute-

toxicity groups, between the control and late-toxicity groups,

and between the acute- and late-toxicity groups (Fig 4).

Through the ROC method, we further demonstrated the

ability of histogram parameters in differentiating radiation-

induced acute toxicity and late toxicity in parotid glands.

Among the sonographic features,Wlow,Whigh, Alow, andAhigh

have excellent (AUC$ 0.90) diagnostic accuracy in differen-

tiating parotid glands with acute toxicity from normal glands;

Whigh and Ahigh have excellent diagnostic accuracy in



TABLE 3. Radiologic Evaluation of B-mode Images of the Control, Acute-, and Late-Toxicity Groups

Group

Echogenicity, n (%) Heterogeneity, n (%)

Hypoechoic Isoechoic Hyperechoic P Value* Mild Moderate Severe P Value*

Comparing three groups <.001 <.001

Control (N = 26) 0 (0) 10 (38.5) 16 (61.5) 24 (92.3) 2 (7.7) 0 (0)

Acute toxicity (N = 32) 16 (50) 11 (34.4) 5 (15.6) 3 (9.4) 15 (46.9) 14 (43.8)

Late toxicity (N = 36) 12 (33.3) 17 (47.2) 7 (19.4) 10 (27.8) 12 (33.3) 14 (38.9)

Comparing control and toxicity groups <.001 <.001

Control (N = 26) 0 (0) 10 (38.5) 16 (61.5) 24 (92.3) 2 (7.7) 0 (0)

Toxicity (N = 68) 28 (41.2) 28 (41.2) 12 (17.7) 13 (19.1) 27 (39.7) 28 (41.2)

Comparing control and acute-toxicity Groups <.001 <.001

Comparing control and late-toxicity Groups <.001 <.001

Comparing acute- and late-toxicity groups .375 .144

P#0.05 means statistically significant.

*P value is calculated by chi-squared test.

Figure 3. Average histograms of the con-

trol, acute-toxicity, and late-toxicity groups.
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differentiating parotid glands with late toxicity from normal

glands; and Ipeak and Wlow have excellent diagnostic accuracy

in differentiating acute from late toxicity.
The ultrasound studies that have demonstrated changes

in the sonographic appearance of parotid glands exposed to

radiation are mostly qualitative, or at best, semiquantitative
7



TABLE 4. Receiver Operating Characteristic (ROC) Analysis of Histogram Features for the Control, Acute-, and Late-Toxicity
Groups

Parameter* Area Under ROC Curve Cutoff Valuey Sensitivity (%)y Specificity (%)y P Valuez

Probability modeled is group = ‘‘Acute Toxicity Group’’ compared to ‘‘Control Group’’

Ipeak 1.00 — — — —

W-3 dB 0.70 49.00 40.63 96.15 .003

Alow 0.94 3.86 84.38 88.46 <.001

Ahigh 0.98 10.61 87.50 100.00 <.001

Wlow 0.97 26.00 93.75 92.31 <.001

Whigh 0.99 110.00 96.88 100.00 <.001

Probability modeled is group = ‘‘Late Toxicity Group’’ compared to ‘‘Control Group’’

Ipeak 0.86 74.00 77.78 80.77 <.001

W-3 dB 0.95 45.00 97.22 84.62 <.001

Alow 0.68 4.33 69.44 73.08 .012

Ahigh 0.99 10.77 91.67 100.00 <.001

Wlow 0.61 27.00 36.11 92.31 .143

Whigh 0.99 107.00 94.44 100.00 <.001

Probability modeled is group = ‘‘Acute Toxicity Group’’ compared to ‘‘Late Toxicity Group’’

Ipeak 0.90 44.00 87.50 80.56 <.001

W-3 dB 0.79 43.00 50.00 97.22 <.001

Alow 0.77 3.26 71.88 75.00 <.001

Ahigh 0.68 13.94 62.50 75.00 .005

Wlow 0.90 23.00 81.25 83.33 <.001

Whigh 0.72 138.00 84.38 58.33 <.001

Probability modeled is group = ‘‘Toxicity Group’’ compared to ‘‘Control Group’’

Ipeak 0.92 66.00 76.47 100.00 <.001

W-3 dB 0.83 45.00 75.00 84.62 <.001

Alow 0.80 3.89 66.18 88.46 <.001

Ahigh 0.98 10.61 89.71 100.00 <.001

Wlow 0.78 27.00 63.24 92.31 <.001

Whigh 0.99 107.00 95.59 100.00 <.001

P#0.05 means statistically significant.

*Logistic regression model was used with each histogram parameter.
yCutoff value is the value of each parameter as maximizing sum of the specificity and sensitivity.
zP value is to examine if the area under the ROC curve (AUC) is different from 0.5 (AUC = 0.5 means the parameter has no ability to predict

toxicity).

Figure 4. Scattergrams of histogram features demonstrate the separation between the control (red triangles), acute-toxicity (green stars), and
late-toxicity groups (blue sterns): (a) histogram features: Ahigh, Alow, and Ipeak and (b) histogram features: Whigh, Wlow, and W-3 dB.
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(23,24). In addition, previous studies were either on acute

toxicity (24) or late toxicity (23). In our earlier studies

(18,21), we demonstrated that histogram analysis could

differentiate post-RT parotid glands with late toxicity from

normal glands. In this study, we demonstrated significant

differences in sonographic features between parotid glands

with acute and late toxicities and normal parotid glands.
8

Homogeneous echotexture was observed in normal parotid

glands, whereas heterogeneous texture was observed in the

parotid glands of both acute- and late-toxicity groups. For

the acute-toxicity group, the heterogeneous texture of post-

RT parotid glands may be due to the presence of inflamma-

tory infiltrates, which appear as hypoechoic (dark) areas

(25–28). For the late-toxicity group, the heterogeneous
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echotexture may be due to the presence of fibrosis, which

appears as hyperechoic (bright) lines or spots (25–28). As

shown in our study, physicians’ subjective evaluations based

on echogenicity and homogeneity of gray scale ultrasound

images of the parotids were unable to distinguish between

the acute-toxicity and late-toxicity groups. The echogenicity

evaluation of the parotid gland is based on the comparison

with the adjacent musculature. However, the adjacent muscles

often receive the same dose of radiation as the parotid gland

and may suffer from radiation-induced acute and late injury.

For instance, the adjacent muscles may develop radiation-

induced fibrosis and, therefore, may appear hyperechoic on

the ultrasound scan.

The use of RT to treat head-and-neck cancer often involves

radiation exposure of the parotid glands. As a result, many

patients will develop xerostomia during the course of RT, a

few weeks, months, or years after therapy. Xerostomia is

commonly assessed through physicians’ physical examination,

patient-reported outcomes, and QoL instruments based on

the symptoms (eg, altered taste or sensation of dryness) (29).

The lack of objective evaluation or validated matrix for the

assessment of parotid gland injury has slowed knowledge

and treatment development and evaluation of xerostomia

(20). We report our ultrasound study of parotid gland injury

to highlight these problems and emphasize the importance

of early recognition to minimize morbidity. Early detection

of parotid gland injury would benefit patients by guiding phy-

sicians in modifying treatment regimen or providing early

intervention.

One limitation of the sonographic histogrammethod is that

the histogram of the images depends on many factors

including time gain compensation and the nonlinear process-

ing of the images (30). To overcome this limitation, we per-

formed a pilot study to determine the optimal preset. All

patients were scanned with this preset to facilitate relative

comparison among patients. Another approach to overcome

this limitation is through rigorous calibration procedures.

For example, if two different settings are used for two patients,

the settings need to be recorded. A correctionmap needs to be

generated to normalize one image to the other.

Prospective validation of these ultrasound histogram

features as convenient, quantitative imaging biomarkers

of parotid injury is warranted. The pattern of toxicities

changes with new RT treatment regimen alone or in com-

bination with surgery and chemotherapy compared to

conventional RT. Therefore, safe and cost-effective imag-

ing methods to define and monitor new radiation-related

toxicities are, thus, important in RT. The ongoing longi-

tudinal study will enlarge the patient database and

elucidate the trajectory of toxicity development using

quantitative ultrasound. In addition, the predictive utility

of the imaging method is continuously being refined and

validated via patient-reported symptoms such as dry

mouth and pain. These ultrasound parameters may provide

a useful matrix of parotid gland injury secondary to

radiation. The ultrasound technology could be further
developed into a low-cost imaging technique for parotid

gland monitoring and assessment.
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Abstract—Skin toxicity is the most common side effect of breast cancer radiotherapy and impairs the quality of life
of many breast cancer survivors. We, along with other researchers, have recently found quantitative ultrasound to
be effective as a skin toxicity assessment tool. Although more reliable than standard clinical evaluations (visual
observation and palpation), the current procedure for ultrasound-based skin toxicity measurements requires
manual delineation of the skin layers (i.e., epidermis-dermis and dermis-hypodermis interfaces) on each ultrasound
B-mode image. Manual skin segmentation is time consuming and subjective. Moreover, radiation-induced skin
injury may decrease image contrast between the dermis and hypodermis, which increases the difficulty of delinea-
tion. Therefore, we have developed an automatic skin segmentation tool (ASST) based on the active contour model
with two significant modifications: (i) The proposed algorithm introduces a novel dual-curve scheme for the double
skin layer extraction, as opposed to the original single active contourmethod. (ii) The proposed algorithm is based on
a geometric contour framework as opposed to the previous parametric algorithm. This ASSTalgorithm was tested
on a breast cancer image database of 730 ultrasound breast images (73 ultrasound studies of 23 patients). We
compared skin segmentation results obtained with the ASST with manual contours performed by two physicians.
The average percentage differences in skin thickness between the ASST measurement and that of each physician
were less than 5% (4.8 ± 17.8% and 23.8 ± 21.1%, respectively). In summary, we have developed an automatic
skin segmentation method that ensures objective assessment of radiation-induced changes in skin thickness. Our
ultrasound technology offers a unique opportunity to quantify tissue injury in a more meaningful and reproducible
manner than the subjective assessments currently employed in the clinic. (E-mail: tliu34@emory.edu) � 2013
World Federation for Ultrasound in Medicine & Biology.

Key Words: Skin segmentation, Radiation toxicity, Breast cancer radiotherapy, Breast ultrasound.
INTRODUCTION

Radiation-induced toxic effects on skin, including skin
thickening, swelling and hardening, are themost common,
debilitating, short-term and long-term side effects of
breast cancer radiotherapy (Small and Woloschak 2006).
Although recognized for decades, the assessment of skin
toxicity is carried out subjectively by physicians through
visual evaluation and palpation. We, along with other
researchers (Huang et al. 2007; Liu et al. 2010;
Warszawski et al. 1998; Zhou et al. 2009), have recently
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reported that ultrasound can be used to quantitatively
assess skin toxicity after radiotherapy for breast cancer.
In particular, skin thickening was observed in almost all
post-radiotherapy patients (Huang et al. 2007; Liu et al.
2010), making it an important parameter in ultrasonic
evaluation of skin toxicity.

The major challenge in ultrasonic skin evaluation is
accurate skin segmentation (delineation) on B-mode
images. Human skin has two layers: the epidermis and
the dermis. The tissue below the dermal layer is the hypo-
dermis (subcutaneous tissue) (Fig. 1). On the 10-MHz-
frequency ultrasound B-mode images (Fig. 2a), the
normal epidermis and dermis have bright, well-defined
boundaries; whereas the relatively thin epidermis appears
as a single echo band. However, after breast radiotherapy,
radiation-induced damage to the basal layers of dermal
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Fig. 1. Schematic diagram of the skin. Skin comprises two
layers: epidermis and dermis. The hypodermis lies under the

dermis.
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cells (Archambeau et al. 1995; Fajardo et al. 2001) can
often result in decreased contrast at the hypodermis
interface, as shown in Figure 2b. Identification of this
interface is a demanding task even for experienced physi-
cians. In our previous skin toxicity studies, the skin was
manually delineated, and inter-observer reliability was
determined (Yoshida et al. 2012). Nevertheless, manual
segmentation is time consuming. In addition, such exten-
sive human interaction inevitably induces subjectivity
into the process.

In this article, we report the development of an auto-
matic skin segmentation tool (ASST) based on the active
contour method with two major modifications. The active
contour (snake) method has had a large audience in the
image segmentation community since its proposal by
Kass et al. (1988). To deal with skin segmentation, one
major modification introduces a dual-curve evolution
technique that is used to detect the epidermis-dermis
and dermis-hypodermis interfaces. The other modifica-
tion is that the proposed algorithm uses a geometric active
contour framework as opposed to the previous parametric
algorithm (Lagarde et al. 2005), which requires param-
Fig. 2. Ultrasound B-mode images of an (a) untreated (normal)
epidermis and dermis, can be seen in both images. Radiation-in

segmented dermis-hypodermis inte
eter input before segmentation. The main advantage of
the proposed ASST algorithm is that it fully automates
skin delineations on ultrasound breast images. Further-
more, we found that the ASST could accurately segment
both normal skin and radiotherapy-damaged skin.

The remainder of the article is structured as follows.
In the next section, Methods, we introduce our ASST
algorithm and emphasize the modifications made to the
active contour methods. In the Results section, we
describe the findings of our clinical study of ASST using
73 breast ultrasound examinations (730 B-mode images),
including 365 normal breast images and 365 post-
radiotherapy breast images. The ASST results were
compared with physicians’ manual contours of the skin
layers, and statistical analyses were conducted to evaluate
the performance of the ASST. In the Discussion, we high-
light the strength of the proposed automatic segmentation
algorithm.
METHODS

Theory behind the automatic skin segmentation tool
The proposed skin segmentation algorithm, illus-

trated in Figure 3, consists of twomajor components. First,
a Riemannian metric (Caselles et al. 1997; Kichenassamy
et al. 1996; Siddiqi et al. 1998) is derived from the image
information, and the curve is evoled by minimizing its
length under the Riemannian metric, in order to
converge to the desired epidermis-dermis interface. Next
the dermis-hypodermis interface is identified through
a two-step optimization process. The ‘‘center line’’ of
the dermis is determined in the first step; the dermis-
hypodermis interface is located in the second step.
Epidermis-dermis interface segmentation
In this section, we describe the method used to iden-

tify the interface between the epidermal and dermal
layers. The intensity of the ultrasound image to be
breast and (b) irradiated breast. The two layers of the skin,
duced skin injury is evidenced by the skin thickening and
rface on the B-mode images.



Fig. 3. Flowchart for the proposed method for automatic skin segmentation of ultrasound B-mode images. The block
diagram on the left summarizes the two main steps of the skin segmentation algorithm. On the right are the intermediate

segmentation curve positions corresponding to the block diagram.
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segmented is denoted as I(x, y), where x indicates the
horizontal axis with a range of [0, X], and y indicates
the vertical axis with a range of [0, Y]. Because the breast
skin does not fold, to preserve this condition, wewrote the
curve of the skin layers as a graph (x, p(x)) of function
p: [0, X] / [0, Y]. The location of the epidermis-
dermis interface usually corresponds to image regions
with drastic intensity changes, which results in a high
image gradient magnitude. Therefore, we expected the
curve (x, p(x)) to pass through those high gradient loca-
tions. This is achieved within the framework of curve
evolution under the Riemannianmetric. Specifically, first,
using the image intensity information, we define a Rie-
mannian metric f(x, y) as

f ðx; yÞ:5 1

11ðS � Gsðx; yÞ � Iðx; yÞÞ2
(1)
where Gs(x, y) is Gaussian kernel with standard deviation
s. In this application, s is fixed at 3 to balance between
image blurring and noise removal. It is also noted that
the purpose of Gaussian filtering is to remove some
non-smoothness in the segmentation cost function, rather
than to improve the visual appearance of the ultrasound
images, which, on its own, is an active research field
(Hao et al. 1999; Michailovich and Tannenbaum 2006;
Yu and Acton 2002). S is the Sobel edge operator, S 5
(1, 2, 1; 0, 0, 0; –1, –2, –1), and the operator * denotes
2-D convolution. The design of the discrete operator
should take the sampling rate into consideration. This
includes adjusting the size of the discrete operator and
the values within the kernel for the given sample
frequency and edge size. On the other hand, the prior
Gaussian filtering is able to construct a nesting of scale
space that is able to accommodate the original sampling



Automated skin segmentation in evaluation of skin toxicity d Y. GAO et al. 2169
frequency. Therefore, we can fix the Sobel operator and
adjust the Gaussian filtering for the given image and
target. Therefore, the Sobel operator is fixed to its canon-
ical form. The metric f(x, y) is a positive function on the
same domain as the original image. Wherever a high
gradient edge region exists, the f(x, y) value decreases.
In Euclidean geometry, the infinitesimal curve length
of the parametric curve (x, p(x)) at position x is
[1 1 (p0(x))2]1/2 (Hamming 2004). However, under this
new Riemannian metric f(x, y), the infinitesimal curve
length at position x is f(x, p(x))g[1 1 (p0(x))2]1/2. If the
curve covers the skin regions, the total curve length
would be small due to the effect of f(x, y). Therefore,
we modeled the epidermis-dermis interface curve as the
function that minimizes the energy (Riemannian curve
length):

pðxÞ5 argminEðx; pðxÞÞ

Eðx; pðxÞÞ:5
ðX
0

f ðx; pðxÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ðp0ðxÞÞ2

q
dx

(2)

Next, to solve for the optimal epidermis-dermis
interface curve, the Euler-Lagrange equation of E(x,
p(x)) in eqn (2) is computed. Denoting the Lagrangian
as L, the Euler-Lagrange equation is computed as

vL
vp
2 d

dx
vL
vp0 5 fy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ðp0ðxÞÞ2

q
2fx

p0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ðp0ðxÞÞ2

p

2f p00ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ðp0ðxÞÞ2

p 2fy
ðp0ðxÞÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ðp0ðxÞÞ2

p 1f p00ðxÞðp0ðxÞÞ2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ðp0ðxÞÞ2

p �3

(3)

We augment the curve p(x) with an artificial time variable
t, and the optimal curve can then be found by solving the
initial-boundary-value problem:

vp
vt
5 v

vx
vL
vp02

vL
vp

vp
vx

��
x5 0

5 vp
vx

��
x5X

5 0

pðx; 0Þ5 0

(4)

At convergence, the curve would locate the expected
epidermis-dermis interface corresponding to a minimal
Riemannian length/energy.

Dermis-hypodermis interface segmentation
Compared with the epidermal-dermis interface,

extracting the dermis-hypodermis interface poses a bigger
challenge because of the contrast at the dermis-
hypodermis interface. Moreover, for radiation-damaged
skin, multiple fragments often appear on the dermis-
hypodermis interface. Overall, the dermis-hypodermis
interface should correspond to a minimal energy state
under the same Riemannian metric created for the
epidermis.
The energy defined in eqn (2) has at least two
local minimal configurations. One corresponds to the
epidermis-dermis interface and the other to the dermis-
hypodermis interface. The curve in the center of the
dermis has a high energy state. In solving eqn (2), we
have already identified one energy minimization configu-
ration for the epidermis-dermis interface; the finding of
the dermis-hypodermis interface is modeled as a process
that skips the epidermis-dermis interface and converges
to the dermis-hypodermis interface. As one step toward
that goal, previous researchers assumed a certain width
for the dermis (Lagarde et al. 2005). Consequently, they
initiated the dermis-hypodermis interface by moving
a distance p(x) and then fine-tuned the curve by mini-
mizing the energy. However, two issues are associated
with using this scheme in our skin toxicity assessment
scenario. First, dermis thickness varies significantly in
irradiated and non-irradiated patients. This creates tech-
nical difficulties in determining a pre-defined ‘‘jump
distance.’’ Second, and more fundamentally, dermis
thickness is a key parameter in measuring toxicity, but
the pre-defined ‘‘jump distance’’ is an estimate for that
value; hence, the estimate strongly biases the final results.

In this work, we propose a robust two-step scheme to
identify the dermis-hypodermis interface, without the
aforementioned assumptions and limitations.

In the first step, the optimization problem needs to
be solved to find the center curve of the dermis:

vðxÞ5 argminEðx; vðxÞÞ

Eðx; vðxÞÞ:5
ðX
0

1

f ðx; vðxÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ðv0ðxÞÞ2

q
dx

(5)

Here the initial position of v(x) is v(x)5 p(x)1 ε, and ε is
a small positive value like 0.1 pixel that moves the
epidermis curve down a short distance; the optimization
then drives the curve further to the center position in
the dermal layer. Essentially, the metric image f(x, y) is
placed in the denominator, and the energy function is
effectively flipped: what used to be minimizer now
becomes a maximizer, and vice versa. Previously (when
f(x, y) was in the numerator, as in eqn [2]), the two skin
layer interfaces corresponded to a low-energy state, and
the center curve of the dermis to a high-energy state.
Now (as in eqn [5]), the center curve of the dermis has
a low energy state and will be extracted by solving eqn
(5). The reason for using the reciprocal, instead of nega-
tion, is that the reciprocal gives another metric that
satisfies the positive definite requirement of being a Rie-
mannian metric. However, by negation, such require-
ments would be violated and numerical instability
would occur. The choice of the ε value would not bias
the thickness computation. In the second step, with the
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center curve located, the dermis-hypodermis interface
curve is computed by solving

hðxÞ5 argminEðx; hðxÞÞ

Eðx; hðxÞÞ:5
ðX
0

f ðx; hðxÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ðh0ðxÞÞ2

q
dx

(6)

with the initial position of h(x) hðxÞ at h(x)5 2v(x) – p(x).
Equation (6) is structurally similar to eqn (2), but the initial
condition differs. As a result, at convergence, the final
position of h(x) is located on the dermis-hypodermis
interface.
Validation and reliability study
The ASSTwas tested and validated using our breast

cancer radiotherapy ultrasound imaging database. Our
study was conducted under institutional review board
approval, and written, informed consent was obtained
from all participants. Twenty-three patients with breast
cancer who underwent breast conservation surgery
(lumpectomy) and breast irradiation for early-stage
breast cancer were included in this study (Liu et al.
2010). The median age was 56 (range: 44–74), and the
median time elapsed between completion of radiotherapy
and ultrasound examination was 22 mo (range: 6–92 mo).
All patients received 50.0–50.4 Gy to the whole breast
(1.8- or 2.0-Gy fractions); an electron boost of 10.0–
16.0 Gy at the lumpectomy site followed. Doses were
delivered using parallel and opposed 6-MV tangential
fields. Beams were modulated using wedges to ensure
dose homogeneity according to standard International
Commissions on Radiation Units and Measurements 50
(ICRU-50) guidelines (ICRU 1993). Eighteen patients
underwent one ultrasound exam, and the other 5 under-
went multiple exams over a 1-y period. Overall, 73 ultra-
sound exams and 730 ultrasound images (365 normal
breast images and 365 post-radiotherapy breast images)
were analyzed in this study, and these gray-scale images
have an intensity range of [0, 255]. (The ultrasound image
is stored in a matrix of bytes. Each byte represents an
8-bit unsigned integer with 256 levels ranging from 0 to
255.) Ultrasound data acquisition has been reported
previously and is briefly summarized here (Liu et al.
2010). Patients were scanned with a clinical ultrasound
scanner in the supine position. Five ultrasound scans of
each breast were obtained: left breast-upper (12:00),
lateral (3:00), lower (6:00), medial (9:00) and tumor
bed, and right breast-upper (12:00), medial (3:00), lower
(6:00), lateral (9:00) and tumor bed. As a baseline
measurement, we also scanned the same areas on the
untreated (contralateral) breast. Ultrasound studies were
performed using a clinical scanner (Sonix RP, Ultrasonix,
Richmond, BC, Canada) with a linear array transducer
(L14-5/38 probe, 128 elements). All ultrasound data
were acquired with the same settings: 10-MHz frequency,
1-cm focal length, 4-cm depth, 72% gain, 26 frames/s and
80-dB dynamic range. Ultrasonic B-mode images were
acquired from the treated and contralateral normal breast.

The reliability study was conducted in two ways.
First, we tested our skin segmentation algorithm by
measuring skin thickness. Two observers were asked to
independently contour the two skin layer interfaces on
all 730 images. Observer 1 is an ultrasound expert, and
observer 2 is a radiation oncologist. The skin thickness
results obtained with our segmentation algorithm were
compared with the manual contour results. Linear regres-
sions were performed and correlation coefficients were
calculated for assessment of consistency between the
ASST and the observers. Furthermore, the accuracy of
the segmentation of the two skin layers was evaluated
using the absolute curve difference (ACD). For the two
curves c1(x) and c2(x) with x ε [0, X], the absolute curve
difference D1,2(x) between them is defined as

D1;2ðxÞ:5 jc1ðxÞ2c2ðxÞj (7)

The ACD was computed between the ASST results
and each observer’s results and also between the two
observers’ results.
RESULTS

Skin segmentation with the ASSTwas performed on
all 730 breast images, and the overall computation time
was less than 5 min. Figure 4 is an example of a post-
radiotherapy breast image, in which the skin was delin-
eated by the ASST program and two physicians. This
ultrasound image was obtained 1 y after treatment of
a 55-y-old breast cancer patient with a radiation dose of
60.4 Gy. According to the physician’s assessment, based
on Radiation Therapy Oncology Group (RTOG) Late
Morbidity Scoring Scheme, the patient developed mild
(grade 1) late skin toxicity. On the ultrasound image,
such radiation-induced skin damage was evidenced by
the low contrast and segmented interface between the
dermis and hypodermis. On visual inspection, the ASST
skin segmentation is similar to the manual contours per-
formed by the two experts.

Overall, the ASST skin segmentation results were
close to the manual segmentation results, which are
currently the gold standard in the clinic. For all 730 ultra-
sound images, percentage differences between skin thick-
ness measurements made using the ASST algorithm and
measurements by the two observers are summarized in
Table 1. For the skin thickness, with similar variances,
the average percentage differences between the ASST



Fig. 4. Ultrasound breast images and skin segmentation. (a) Original ultrasound B-mode image. (b) Skin layers manually
delineated by observer 1. (c) Skin layers manually contoured by observer 2. (d) Skin layers segmented by the proposed

automatic skin segmentation algorithm (ASST).
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and observers 1 and 2 were 4.8% and –3.8%, whereas the
average percentage difference between the two observers
was 29.9%. Figure 5 illustrates the linear regression of
skin measurements between the ASSTand each observer.
The correlation coefficients, R2, were 0.74 for observer
1 and 0.70 for observer 2, demonstrating the accuracy
of ASST skin segmentation.

Performance of the ASST was also evaluated sepa-
rately for the normal breast and the treated breast. As
seen in Figure 6, the differences between the ASST algo-
rithm and each observer were larger for irradiated breasts
than for normal breasts. The reason for this is that radia-
tion injury increases the difficulty of skin segmentation.
In addition, the ACDs were larger for the dermis than
for the epidermis, not only for the ASST algorithm, but
also for the two observers.
Table 1. Percentage differences in skin thickness
measurements made with the proposed automatic skin
segmentation tool (ASST) and two observers’ manual

segmentations

Comparison Difference

ASST versus observer1 4.8 6 17.8%
ASST versus observer 2 23.8 6 21.1%
ASST versus obsever 3 29.9 6 20.1%
DISCUSSION

We developed an ASST algorithm that automates
skin segmentation on breast ultrasound images. The
ability of the ASST to delineate normal as well as
radiation-damaged skin was explored with a database of
730 ultrasound images, among which 365 were of normal
(untreated) breasts and 365 were of radiation-treated
breasts. In current clinical practice, skin contours on
breast ultrasound images are performed manually by
physicians. The proposed ASST method is more accurate
and faster, compared with manual skin segmentations.
Specifically, the average percentage differences between
skin thickness measurements made using the ASST and
measurements made by manual segmentation were less
than 5%. Moreover, the two physicians each spent
approximately 700 to 800 min to contour the skin layers
for the 730 ultrasound images, whereas the ASST
completed all segmentations within 5 min. Figure 7 illus-
trates three representative cases: normal breast, irradiated
breast in a patient without toxicity and irradiated breast in
a patient with toxicity. For all three cases, ASST skin
segmentation results are similar to physicians’ manual
contours.

In 2005, Lagarde et al. proposed using the original
active contour method to segment skin in various regions,
including the arm, thigh, forehead and neck. A parametric



Fig. 5. Linear regressions comparing automatic skin segmentation tool (ASST)-computed skin thickness with human
observer-delineated skin thickness. (a) ASST skin thickness versus observer 1. (b) ASST skin thickness versus observer 2.

Fig. 6. Absolute curve differences in skin segmentation between results for the automatic skin segmentation method and
manual results for the two observers. (a) Epidermis segmentation. (b) Dermis segmentations. Comparisons are made for

normal and irradiated breasts.
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Fig. 7. Three representative data sets on the different cases observed: (a) normal breast image with (b) skin layers manu-
ally contoured by physician and (c) skin layers contoured with the automatic skin segmentation method. (d) Post-
irradiation patient without toxicity with (e) skin layers manually contoured by physician and (f) skin layers contoured
with the automatic skin segmentation method. (g) Post-irradiation patient with toxicity with (h) skin layers manually con-

toured by physician and (i) skin layers contoured with the automatic skin segmentation method.
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model was used to represent the contour and its evolution
with the local image gradient. Comparison of their auto-
matic segmentation results with physicians’ contours
yielded R2 values ranging from 0.01 to 0.61. In this study
of breast skin segmentation, comparison of our automatic
segmentation results with manual results for one physi-
cian yielded an R2 value of 0.76, and for the other physi-
cian, 0.74, representing a significant improvement in
consistency with the physicians’ manual contours.

Although segmentation for ultrasound images has
been studied extensively in organs (Noble and
Boukerroui 2006) such as the heart (Mitchell et al.
2002) and prostate (Ladak et al. 2000; Zhan and Shen
2006), investigations on skin segmentation are limited
(Lagarde et al. 2005). To the best of our knowledge, this
is the first segmentation study on breast skin after radiation
treatment. To extract the two skin layers from the ultra-
sound image, we extended the well-known active contour
method and designed an open-ended, dual-curve evolution
technique. During skin layer extraction, our ASSTmethod
considers both the information from the ultrasound image
information and skin properties, such as smoothness.
More explicitly, a set of partial differential equations
(PDEs) is derived for the position of the curve, so that
the curve will be passing through the locations where
the greatest change in image intensity occurs, which is
the expected location of the skin layer. Although such
a technique accurately locates the epidermis, because of
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the decreased contrast and possible radiation damage,
extraction of the dermis is often more challenging.

The other significant modification of the proposed
ASST method was fully automatic detection of the
dermis under the Riemannian geometry framework.
Previous researchers usually extracted the dermis with
a parametric algorithm (Lagarde et al. 2005). In the para-
metric method, on one hand, the curves are represented
by spline nodes, which is numerically less stable. On
the other hand, after the first curve (epidermis-dermis
boundary) is located, an initial guess of a uniform shift
(‘‘jump distance’’) f is required to locate the second curve
(dermis-hypodermis interface). Then, this shift is fine-
tuned within a limited range from the initial position to
capture the second boundary. Therefore, the final accu-
racy is strongly affected by the initial shift. The skin
thickness measurement is also affected by the value of
f, which implicitly induces subjectivity. In contrast, our
ASST is a geometric-based method, where one set of
PDEs moves the epidermis curve to the center of the
dermis area. Then, another set of PDEs finally moves
the center-of-dermis curve to the position of the dermis-
hypodermis interface. The entire process is automatic,
and more importantly, by using PDEs, we remove the
subjectivity induced by the user-given parameter f.

We realize that other than the active contour frame-
work employed in the present work, many other tech-
niques may be able to solve skin the segmentation
problem. Noticeably, the mean shift algorithm proposed
by Comaniciu and Meer (2002) gives a robust estimation
of the centers of the modes among random samples in the
feature space. The level-set algorithm seeks a contour to
separate an image into two parts (Chan and Vese 2001).
Although those algorithms tend to extract ‘‘blob’’-shaped
targets in the images, instead of curve-shaped objects, as
needed for the skin, future studies will investigate how
such algorithms could be used for a more accurate,
more robust and faster algorithm for the clinical task.

In dermatology, skin is frequently imaged with 20-
MHz high-frequency ultrasound, greatly improving the
contrast between different layers of the skin (Foster
et al. 2000; Harland et al. 2006; Hoffmann et al. 1991;
Ritter et al. 2002; Vogt and Ermert 2005). In high-
frequency ultrasound, the epidermis appears as a layer
of certain width, as compared with our study in which
the epidermis-dermis interface appeared fused as a single
echo band. We used a frequency of 10 MHz to image the
breast, because both skin and deeper glandular tissue are
evaluated for radiation-induced damage.

In breast cancer radiotherapy, radiation toxicity is
very common and routinely assessed through physical
examinations. The drawbacks of physical examinations
are subjectivity and imprecision. There is significant
inconsistency in clinical assessments.We have conducted
a series of studies to introduce an ultrasound imaging tool
into the diagnosis of post-irradiation breast tissue
toxicity. This research tool would be useful in comparing
skin toxicity after various treatment strategies, such as
altered fractionation and external beam radiation versus
brachytherapy, for example, Mammosite. The motivation
is to develop an automatic, non-invasive and quantitative
tool to measure normal tissue toxicity that has the poten-
tial to overcome the limitations of the current assessment
tools in the clinic. In other words, our ultrasound tool may
help distinguish good treatments from bad treatments,
with respect to skin toxicity, and determine the effects
of different types of treatment schemes in breast radia-
tion. Toward this goal, the proposed ASST helps us
move one step further—it will free physicians from
tedious segmentation work and mitigate the subjectivity
in skin delineation.

CONCLUSIONS

A fully automated skin segmentation algorithm
based on the active contour method is described. The
proposed ASST makes two contributions to the develop-
ment of a non-invasive and quantitative imaging tool to
assess radiation-induced tissue toxicity. First, the ASST
program reduces physicians’ manual work in skin delin-
eation. More importantly, this program further reduces
the subjectivity in radiation toxicity evaluation and
provides more objective measurements of normal tissue
injury in breast cancer radiotherapy. Although first clini-
cally applied in breast cancer radiotherapy, our ASST
program can also be used for other treatment sites, such
as the head and neck.
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ABSTRACT: The objective of this study is to develop a MR-TRUS prostate registration with a subject-
specific biomechanical model, acquired from two US scans, to improve MR-targeted, US-guided prostate 
interventions (e.g., biopsy and radiotherapy) by incorporating the cancerous regions obtained from 
multiparametric MRI. The proposed registration method combines a novel subject-specific 
biomechanical model with a B-spline transformation to register the prostate gland of the MR image to the 
TRUS volume. The B-spline transformation is calculated by minimizing Euclidean distance between the 
normalized attribute vectors of landmarks on MR and TRUS prostate surfaces. The subject-specific 
biomechanical model is obtained through two US scans in which a 3D elasticity (strain) map of the 
prostate is generated. This biomechanical model is then used to constrain the B-spline-based 
transformation to predict and compensate for the internal prostate-gland deformation. This method is 
validated with a prostate-phantom experiment and a pilot study of 5 prostate-cancer patients. For the 
phantom study, the mean target registration error (TRE) was 1.29 mm. MR-TRUS registration was also 
successfully performed for 5 patients and the mean TRE was 1.71±0.25 mm. The proposed registration 
method may provide an accurate and robust means of estimating internal prostate-gland deformation, and 
is therefore well-suited to a number of MR-targeted, US-guided prostate interventions. 

 

Purpose: Prostate cancer is the major international health problem with a large and rising incidence in 
many parts of the world [1]. Transrectal ultrasound (TRUS) is the standard imaging modality for the 
image-guided interventions (e.g., biopsy and brachytherapy) due to its versatility and real-time capability. 
However, in these procedures, the cancerous regions often are not well-targeted because of the inability 
to reliably indentify prostate cancer through TRUS. In the past decade, MR imaging has shown promise 
in visualizing prostate tumors with high sensitivity and specificity for the detection of early-stage prostate 
cancer [2]. A number of researchers have reported the use of multiparametric MRI for cancer detection in 
prostate with high rates of success [2, 3]. Therefore, the ability to incorporate MR-targeted cancer-
bearing regions into TRUS-guided prostate procedures can provide extremely important benefits in terms 
of more successful prostate-cancer diagnosis and treatment. 

To enable MR-targeted, TRUS-guided prostate intervention, MR-TRUS prostate registration is required 
to map the diagnostic MRI information onto the ultrasound images. MR-TRUS image registration is very 
challenging due to the intrinsic differences in grey-level intensity characteristics between the two image 
modalities and the presence of artifacts, particularly in the TRUS images. Hence, the standard intensity-
based approaches, such as mutual information, often perform poorly since a probabilistic relationship 
between MR and TRUS voxel intensities usually does not exist. Recently, several non-intensity-based 
methods have been explored for MR-TRUS prostate registration. Bharatha et al. used an elastic finite 
element (FE) model to align pre- with intra-procedural images of the prostate [4]. Risholm et al. 
described a probabilistic method for non-rigid registration of prostate images based on a biomechanical 
FE model which treats the prostate as an elastic material [5]. Davatzikos et al. [6] and Mohamed et al. [7] 
proposed to combine statistical motion modeling with FE analysis to generate 3D deformable models for 
MR-TRUS prostate image registration. Hu et al. used a FE-based statistical motion model trained by 
biomechanical simulations and registered the model to 3D TRUS images [8]. The purpose of this study is 
to develop a novel MR-TRUS registration method that combines a subject-specific biomechanical model 
with B-spine-based transformation. 



Methods: The prostate gland is a heterogeneous organ with inter- and intra-patient variation in its 
physical and biological properties (for example, the calcification, cyst, and cancer regions have different 
stiffness with the normal tissue). The proposed registration method modeled the prostate tissue as an 
inhomogeneous elastic material. As shown in Fig. 1, our MR-TRUS registration method consists of three 
major components: (1) to calculate 3D prostate strain vector map obtained from two 3D TRUS scans 
under different probe-induced pressures , which is similar as US elastography; (2) to use surface-based 
registration between the MR and TRUS prostate surfaces to capture the prostate transformation based on 
the B-spline model; (3) to combine the strain vector map into the B-spline-based transformation to 
constrain the volumetric deformation of the prostate gland. The diagram of the proposed registration 
method is shown in Fig. 2.   

 
Figure 1. The flow chart of the MR-TRUS prostate registration. 

 
Figure 2. The MR-TRUS prostate registration diagram. Prostate gland is shown in yellow. The green circle represents the TRUS 

probe.  

Biomechanical Model 

In our study the two 3D TRUS images are captured with a clinical ultrasound scanner under the different 
TRUS probe-induced pressures (compression). In order to estimate the global and local displacement of 
the prostate tissue deformation between two TRUS images, we map the first 3D TRUS image to the 
second 3D TRUS images with high pressure using an rigid and non-rigid voxel-based registration 
algorithm [9]. Normalized Mutual Information (NMI) is used as the voxel-based similarity measure. 
Strain is defined as the deformation of an object, normalized to its original shape, which describes the 
compressibility of biological tissues. The deformation of the prostate is caused by probe-induced forces 
by compression and relaxation of the prostate tissue. The tissue at a point undergoes an actual 
displacement specified by a vector. The displacement vector contains three orthogonal components in our 
study. The strain tensors are obtained from the gradient of the local displacement at this point. Finally 
three strain tensors in each voxel are combined into a strain vector BiomechW , which has subject-specific 
tissue biomechanical property.   

B-Spline-based Transformation Model  
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We obtain the prostate tissue transformation B splineT  based on B-spline model through surface match. To 
perform surface registration, the prostate capsules are segmented from the MR and TRUS images. Then, 
a triangular mesh surface is generated for each prostate surface, with the vertices of the surface selected 
as the surface landmarks. Because each surface landmark is actually a vertex of the surface, its spatial 
relations with vertices in the neighborhood can be used to describe the geometric properties around the 
surface landmark [10]. Assuming xi is a surface landmark under study, its geometric attribute is defined 
as the volume of the tetrahedron formed by xi and its neighboring vertices. For each boundary landmark 
xi, the volumes calculated from different neighborhood layers are stacked into an attribute vector ( )iH x , 
which characterizes the geometric features of xi from a local to a global fashion. ( )iH x can be further 
made into an affine-invariant as ˆ ( )iH x , by normalizing it across the whole surface. By using this attribute 
vector, the similarity between two surface landmarks xi and yi, respectively, in MR and TRUS images, 
can be measured by a Euclidean distance between their normalized attribute vectors. The whole energy 
function is defined as 
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where ijp is the fuzzy correspondence matrixes. And  , λ and   are the weights for the energy terms. 

Combined Transformation Model  

The surface-based transformation using the B-spline model does not reflect the actual prostate tissue 
deformation because this model does not take into account the specific tissue elastic property. To 
incorporate tissue biomechanical property, the surface-based transformation B splineT   is regulated by the 
strain vector map biomechW , to constrain the B-spline-based prostate-gland transformation. The prostate 
elastic property is weighted into the B-spline-based tissue deformation to obtain the accurate patient-
specific volumetric deformation of the prostate gland. Contrast to the B-spline-based deformation model, 
our biomechanical model could capture accurate local deformation in heterogeneous tissue. Therefore, 
the transformation simultaneously estimates the surface and internal deformation. 
 

Results: To validate the proposed registration method, we conducted an experiment with a prostate 
phantom, in which two markers and three lesions are imbedded. T1- and T2-weighted images of the 
prostate phantom were acquired using a 1.5T Philips MRI scanner. Two sets of 3D TRUS images were 
acquired with an Ultrasonix ultrasound scanner under two different probe-induced pressures. Our 
registration results were compared with the 
surface-based registration (Fig. 3). Contrast to 
the surface-based method which resulted in large 
mismatch of the internal structures such as the 
lesions and urethra, our registration achieved 
close match of the internal structures. 
Quantitative comparison of the two registration 
methods were demonstrated using the target 
registration error (TRE) of the markers. The 
averaged TRE was 3.09±0.46 mm for the 
surface-based method, while 1.29±0.11 mm for 
our proposed method. This demonstrates the 
proposed methods based on the inhomogeneous 
elasticity model improve the registration results 
by providing a physical regularization of the 
deformation map. 

All patients’ TRUS data were acquired using a Hitachi ultrasound machine and a 7.5MHz bi-plane probe. 
All MR images were acquired using a Philips 1.5T MR scanner and a pelvic phase-array coil. All 
prostates were contoured in T2-weighted MR and TRUS images by an experienced physician. For each 
patient, three to six landmarks were indentified in post-registration MR and TRUS images to facilitate 

1

2

3

Surface-based

Our method

Figure 3. 3D comparison of registration results using 
surface-based and our methods. Top row (surface-based 
method): 3D visualization images of the post-registration 
MRI (yellow) and TRUS (blue). Bottom row (our method): 
3D visualization images of the post-registration MRI 
(yellow) and TRUS (blue).  
 



quantitative comparison. Again, we 
compared our registration results with the 
surface-based method. Figure 4 showed the 
registration results of a 65-year old 
prostate-cancer patient. Three cysts were 
identified as landmarks to compare the 
registration results (arrows) and our 
registration was able to achieve a close 
match of these landmarks. Table 1 shows 
the TRE of the 5 patients. The averaged 
TRE was 3.25±0.51 mm for of the surface-
based method, while 1.71±0.25 mm for our 
proposed method, which demonstrates the 
proposed methods based on the 
inhomogeneous elasticity model improve 
the registration results by providing a 
physical regularization of the deformation 
map. 

New or breakthrough work to be presented: The main novelty of the proposed method is to construct 
a 3D biomechanical elasticity (strain) map of the prostate gland using two US scans. As compared with 
previous methods in which the constant elastic parameters of biological tissues were assigned, our 
approach can provide the precise and subject-specific biologic tissue elastic property of the prostate. This 
biomechanical model was used to constrain the B-spline-based deformation derived from the MR and 
TRUS prostate surface displacement to predict the prostate internal deformation. 

Conclusion: In this report, we present a novel 
MR-TRUS registration method that combines 
a novel subject-specific biomechanical model 
with a B-spline transformation to register the 
prostate gland of the MR image to the TRUS 
volume. We have validated the accuracy of the proposed method with a prostate-phantom study and a 
pilot study of 5 prostate-cancer patients. The proposed registration method may provide an accurate and 
robust means of predicting internal prostate-gland deformation, and is therefore well-suited to a number 
of interventional applications where there is a need for deformation compensation. Successful integration 
of multi-parametric MR and TRUS prostate images could provide extremely important benefits in terms 
of more successful prostate-cancer diagnosis and treatment. 
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High-dose-rate (HDR) brachytherapy has become a popular treatment modality for localized prostate 
cancer. Prostate HDR treatment involves placing 10 to 20 catheters (needles) into the prostate gland, and 
then delivering radiation dose to the cancerous regions through these catheters. These catheters are often 
inserted with transrectal ultrasound (TRUS) guidance and the HDR treatment plan is based on the CT 
images. The main challenge for CT-based HDR planning is to accurately segment prostate volume in CT 
images due to the poor soft tissue contrast and additional artifacts introduced by the catheters. To 
overcome these limitations, we propose a novel approach to segment the prostate in CT images through 
TRUS-CT deformable registration based on the catheter locations. In this approach, the HDR catheters 
are reconstructed from the intra-operative TRUS and planning CT images, and then used as landmarks for 
the TRUS-CT image registration. The prostate contour generated from the TRUS images captured during 
the ultrasound-guided HDR procedure was used to segment the prostate on the CT images through 
deformable registration. We conducted two studies. A prostate-phantom study demonstrated a sub-
millimeter accuracy of our method. A pilot study of 5 prostate-cancer patients was conducted to further 
test its clinical feasibility. All patients had 3 gold markers implanted in the prostate that were used to 
evaluate the registration accuracy, as well as previous diagnostic MR images that were used as the gold 
standard to assess the prostate segmentation. For the 5 patients, the mean gold-marker displacement was 
1.2 mm; the prostate volume difference between our approach and the MRI was 7.2%, and the Dice 
volume overlap was over 91%. Our proposed method could improve prostate delineation, enable accurate 
dose planning and delivery, and potentially enhance prostate HDR treatment outcome.  

Key words: Prostate, CT, segmentation, transrectal ultrasound (TRUS), ultrasound-guided, HDR, 
brachytherapy.  

 

 

1. INTRODUCTION 
 
In recent years, an increasing number of men, many of younger ages, are undergoing prostate high-dose-
rate (HDR) brachytherapy instead of radical prostatectomy for localized prostate cancer [1, 2]. Prostate 
HDR treatment involves placing 10 to 20 catheters (needles) into the prostate gland, and then delivering 
radiation dose to the cancerous regions through these catheters. In CT-based prostate HDR brachytherapy, 
catheter insertions are commonly performed under the guidance of intra-operative transrectal ultrasound 
(TRUS), while treatment planning is based on post-operative CT images.  
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HDR prostate brachytherapy depends greatly on the precise delineation of the prostate gland on CT 
images. As is well known, it is challenging to define the prostate volume in CT images due to the poor 
soft-tissue contrast between the prostate and its surrounding tissue (background). This problem worsens 
in the HDR procedure, because the 10 to 20 HDR catheters inserted inside the prostate introduce 
significant artifacts to the prostate CT images.   

Many segmentation methods have been proposed for prostate delineation in CT images. Chowdhury 
et al. proposed a linked statistical shape model (LSSM) that linked the shape variation of a structure of 
interest across MR and CT imaging modalities to concurrently segment prostate on pelvic CT images [3]. 
Feng et al. presented a deformable-model-based segmentation method using both shape and appearance 
information learned from the previous images to guide automatic segmentation of a new set of images [4]. 
Ghosh et al. combined the high-level-texture features and prostate-shape information with the genetic 
algorithm to identify the best matching region in the new to-be-segmented prostate CT image [5]. Li et al. 
presented an online-learning and patient-specific classification method based on the location-adaptive 
image context to achieve the segmentation of the prostate in CT images [6]. Liao et al used a patch-based 
representation in the discriminative feature space with logistic sparse LASSO as the anatomical signature 
to deal with low contrast problems in prostate CT images, and designed a multi-atlases label fusion 
method formulated under sparse representation framework to segment the prostate [7]. Chen et al. 
proposed a Bayesian framework which considered anatomical constraints from bones and learnt 
appearance information to construct the deformable model [8]. These previous methods were all based on 
the appearance and texture of the prostate CT images, and therefore may not work well in the HDR 
procedure due to the strong artifacts generated by the HDR catheters which smear the boundary and 
texture of the prostate on CT images.  

In this study, we propose a novel approach that deforms intra-operative TRUS-based prostate 
contours into the CT images for prostate segmentation through TRUS-CT registration using the catheter 
locations. Our segmentation approach was evaluated through two studies: a prostate-phantom study and a 
clinical study of 5 patients undergoing HDR brachytherapy for prostate cancer. 

 

 

2. METHODS 
 

Our prostate segmentation method for the HDR prostate brachytherapy consists of 5 major steps (Fig. 1).  

 Step 1: 3D TRUS prostate images are captured after catheter insertion during the HDR procedure.  
 Step 2: After the catheter insertion, each patient receives a post-operative CT scan.  
 Step3: The prostate volume is contoured in the 3D TRUS images.  
 Step 4: A TRUS-CT deformable registration is performed using the catheters as landmarks.  
 Step 5: The TRUS-based prostate contour is integrated into the treatment planning CT images to 

segment the prostate for the HDR brachytherapy treatment.  

Our approach requires acquisition of 3D TRUS prostate images in the operation room (OR) right after 
the HDR catheters are inserted, which takes 1-3 minutes. These TRUS images are then used to create 
prostate contours. The HDR catheters reconstructed from the intra-operative TRUS and post-operative CT 
images are used as landmarks for the TRUS-CT deformable registration based on a robust point match 
algorithm.  
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Fig. 1. Flow chart of prostate segmentation in TRUS-guided CT-based HDR brachytherapy. 

 

The correspondences between the catheter landmarks are respectively described by a fuzzy 
correspondence matrixes P. The matrix { }ijP p  consists of two parts. The I J inner submatrix define 

the correspondences of X and Y. It is worth noting that ijp have real values between 0 and 1, which denote 
the fuzzy correspondences between landmarks [9, 10]. In order to perform TRUS-CT deformable 
registration we design an overall similarity function that integrates the similarities between catheter-type 
landmarks and smoothness constraints on the estimated transformation between catheters in CT and 
TRUS images.  
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 ,  and   are the weights for each energy term. The first, second and third terms are the similarity for 
catheter landmarks, and the forth term is the smoothness constraint term.   is called the temperature 
parameter and its weighted term is an entropy term comes from the deterministic annealing technique 
[11].  is the weight for outlier rejection term. f denotes the transformation between CT and TRUS 
images. The overall similarity function can be minimized by an alternating optimization algorithm that 
successively updates the correspondences matrixes ijp , and the transformation function f. The TRUS-
based prostate volume is then deformed to the CT images to finish CT prostate segmentation for treatment 
planning after TRUS-CT registration. 

 

3. RESULTS 

3.1 Phantom study 

Our prostate segmentation method was first tested with a prostate phantom (CIRS Model 053). In this 
phantom, a tissue-mimicking prostate along with the structures simulating the rectal wall, seminal 
vesicles and urethra is contained within an 11.5×7.0×9.5 cm3 clear plastic container. To mimic a prostate 
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HDR procedure, 14 catheters were implanted into the prostate gland under the US guidance. In addition, 
three gold markers were implanted at the base, mid or apex of the prostate. After the prostate 
segmentation, the displacements of these gold markers between the CT and post-registration TRUS were 
used to test the accuracy of our registration. Because the phantom prostate boundary is clear on the CT 
images, we used the manually segmented CT prostate volume as the gold standard to evaluate the 
performance of our prostate segmentation. 

Figure 2 shows the integration of TRUS-based prostate volume into the CT images. The phantom 
TRUS scan was captured with a transverse (axial) pixel size of 0.08×0.08 mm2 and a step size (slice 
thickness) of 0.5 mm. The phantom CT was scanned with a voxel size of 0.29×0.29×1.00 mm3. The 
catheter artifacts are clearly displayed on the axial CT image. On the coronal images, the close match of a 
gold marker location between the post-registration US and CT is shown.  The yellow dotted contour is the 
prostate transferred from the TRUS images after deformable registration between the TRUS and CT 
images.  

 
Fig. 2. Integration of TRUS-based prostate volume into CT images. a1-a3 are CT images of the prostate phantom;  b1-b3 are 
the post-registration TRUS images; c1-c3 are the fusion images between CT and post-registration TRUS images. The close match 
between the gold markers (red arrows) in the CT and TRUS demonstrated the accuracy of our method.  
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A

Fig. 3. Segmentation accuracy is demonstrated through 3 gold markers in the prostate phantom. a1-a3 are axial CT images of 
the prostate phantom;  b1-b3 are its post-registration TRUS images; c1-c3 are the fusion images between the CT and post-
registration TRUS images; and d1-d3 are the TRUS-CT fusion images, where the prostate volume is integrated. The close match 
between the 3 gold markers (red arrows) in the CT and TRUS demonstrated the accuracy of our registration. 

Figure 3 shows the 3 gold markers on the CT, fusion and post-registration TRUS images. The 3 gold 
markers are located at the base, left mid and right mid of the prostate gland. Visually, we can see the 
locations of the gold markers on the post-registration TRUS and CT images are very close. 
Quantitatively, the displacements of the three gold markers between the post-registration TRUS and CT 
images were 0.51, 0.29 and 0.42 mm, respectively. The mean displacement of the 3 gold markers was less 
than 0.5 mm; therefore our registration between the CT and TRUS achieved sub-millimeter accuracy.  

To evaluate the accuracy of our prostate segmentation, we compared our segmented prostate with the 
manually contoured prostate volume from the CT images. The volume difference between the CT and 
post-registration TRUS is an essential measurement in the morphometric assessment of anatomical 
structures. In this phantom study, the absolute volume difference and Dice volume overlap were 1.65% 
and 97.84%, respectively. The segmentation accuracy is demonstrated by the small volume difference and 
large volume overlap of the two prostate contours generated from the proposed method and the gold 
standard.    
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3.2 In vivo patient study 

We conducted a retrospective clinical study of 5 patients, who had received HDR brachytherapy for 
localized prostate cancer. All treated patients received diagnostic Magnetic Resonance Imaging (MRI) 
scans before the HDR brachytherapy treatment. For the HDR brachytherapy, 14-18 catheters and 3 gold 
markers were implanted in each patient under the TRUS guidance. Three gold markers were placed at the 
base, middle and apex of the prostate. Therefore, each patient had a diagnostic MR scan, intra-operative 
3D ultrasound scan and post-operative CT scan. The TRUS prostate image was scanned with 2 mm step 
and 0.07×0.07 mm2 transverse pixel size. The patient’s CT image was captured with the voxel size of 
0.68×0.68×1.00 mm3, and the MR image was obtained with the voxel size of 1.0×1.0×2.0 mm3. 

In this clinical study, the prostate segmentation was successfully performed for all 5 patients. Figure 4 
shows the prostate registration results between the CT and TRUS of a 58 year old patient. The accuracy 
of the CT-TRUS image registration was evaluated by the displacement of each gold marker on the CT 
and post-registration TRUS images. The mean displacement of the gold markers between CT and 
registered TRUS for each patient ranged between 1.1 to 1.6 mm. Overall, the mean displacement of the 3 
gold markers of all patients was 1.2±0.3 mm. Therefore, the registration of the proposed method achieved 
millimeter accuracy.  

 

 
Fig. 4. TRUS-CT registration results. a1-a3 are CT images of a 58-year-old prostate-cancer patient;  b1-b3 are his post-
registration TRUS images; and c1-c3 are the fusion images between the CT and post-registration TRUS images. The close match 
between the gold markers (dark arrows) on the CT and TRUS demonstrated the accuracy of our registration method. 
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To evaluate the accuracy of our prostate segmentation, we used MRI-defined prostate volumes. 
Studies have shown that MRI has a high soft tissue contrast, and can provide accurate prostate delineation 
[12, 13]. Therefore we used prostate manually contoured from the MR images as the gold standard to 
evaluate our prostate segmentation. Due to variations in the patient’s positions during the CT and MR 
scans, the prostate shape could be different between CT and MRI. Therefore, we transformed the MRI-
defined prostate volumes onto CT images by MR-CT deformable registration [14-17]. Finally our 
segmented prostate volumes were compared with those defined from the MRIs.  

Figure 5 shows the absolute volume difference and Dice volume overlap between the MRI-defined 
prostate contours and our prostate segmentation for all 5 patients. The average absolute prostate-volume 
difference between our approach and the corresponding MRI was 7.2±0.9%, and the average Dice volume 
overlap was 91.6±1.3%. The small prostate volume difference and large volume overlap demonstrated the 
robustness of our prostate segmentation method.     

Fig. 5. Evaluation of our prostate segmentation accuracy. (a) Absolute volume difference and (b) Dice volume overlap between 
the corresponding prostate of TRUS and MR images of 5 prostate-cancer patients 

4. CONCLUSION

In this study, we have proposed a novel CT prostate segmentation method through TRUS-CT deformable 
registration using the catheter locations for prostate HDR brachytherapy. While it is well known that 
accurate CT prostate segmentation is challenging, the 10-20 HDR catheters inserted inside the prostate 
worsens the problem by introducing significant artifacts in CT images. In our approach, we rely on the 3D 
TRUS images to provide accurate prostate delineation, and then use the HDR catheters as landmarks to 
register 3D TRUS prostate images to CT images. Therefore, our approach is not affected by the catheter 
artifacts, and can accurately segment the prostate volume in CT images. The proposed approach was 
evaluated through a prostate phantom study and a pilot clinical study of 5 patients. For future directions, 
we will incorporate automatic prostate segmentation methods into our 3D TRUS prostate segmentation to 
speed up the process [18-23]. Our prostate segmentation technology will improve prostate delineations, 
enable accurate dose planning and delivery, and potentially enhance prostate HDR treatment outcomes.  
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ABSTRACT: In this paper we propose a 3D NVB segmentation method for ultrasound (US) image by 
integrating MR and transrectal ultrasound (TRUS) images through MR-TRUS deformable registration. 
First, 3D neurovascular bundles (NVB) are contoured in MR images captured before radiotherapy (RT) 
by a physician, and then 3D MR-defined NVB are transformed into US images by the MR-TRUS 
registration method, which models the prostate tissue as an elastic material, and jointly estimates the 
boundary deformation and the volumetric deformations under elastic constraint. This technique was 
validated with a clinical study of 7 patients undergoing RT treatment for prostate cancer. The accuracy of 
our approach was assessed through the locations of landmarks, as well as previous ultrasound Doppler 
images of patients. MR-TRUS registration was successfully performed for all patients. The mean 
displacement of the landmarks between the post-registration MR and TRUS images was 1.56±0.37 mm, 
and the NVB volume Dice Overlap Coefficient was 92.1±3.2%. We have developed a new approach to 
improve 3D NVB segmentation through MR-TRUS registration for prostate RT, demonstrated its clinical 
feasibility, and validated its accuracy with ultrasound Doppler data. This technique could be a useful tool 
as we try to spare the NVB in prostate RT, monitor NBV response to RT, and potentially improve post-
RT potency outcomes.   

 

Purpose: In the United States, 2.36 million men have survived prostate cancer, and are currently living 
with cancer-affected life years. Erectile dysfunction (ED), or the loss of sexual potency, is the most 
common and debilitating side effect after radiotherapy for prostate cancer. The mechanism behind 
radiotherapy-related ED is not fully understood and one hypothesis is that neurovascular bundle (NVB) 
injury is correlated with the radiation-associated ED. However, the segmentation and localization of the 
NVB remains challenging in most prostate radiotherapy (RT) treatment planning. Currently, MRI is the 
best imaging modality for 3D visualization of the NVB. We propose to integrate MR into transrectal 
ultrasound (TRUS) images through MR-TRUS registration for accurate segment of 3D NVB in TRUS. 

 
Methods: As shown in Figure 1, our segmentation approach evolves 5 major steps:  1) MR diagnostics 
prostate images are captured before the RT procedure; 2) Patient receives 2 3D TRUS ultrasound scans 
and ultrasound Doppler scan; 3) Physician contours NVB volumes using MR images; 4) MR-TRUS 
image registration is performed using a patient-specific biomechanical model; 5) Integration of MR-
based NVB volumes into 3D TRUS mages for treatment planning.  

MR-TRUS registration  

The key part of our proposed segmentation method is MR-TRUS registration. This paper uses a new 
MR-TRUS registration method that combines a subject-specific biomechanical model with B-spine-
based transformation. As shown in Figure 2, our MR-TRUS registration method consists of three major 
components. First, we calculate 3D patient-specific prostate-gland elasticity map from two 3D TRUS 
scans under different probe-induced pressures, which is similar as ultrasound elastography. And then we 
use surface registration between the MR and TRUS prostate surfaces to capture the prostate 
transformation based on the B-spline model by minimizing the Euclidean distance between the 
normalized attribute vectors of surface landmarks of MR and TRUS prostate surfaces. Finally we 
combine the prior prostate-gland elasticity map into the surface-based transformation to constrain/guide 
the volumetric deformation of the prostate gland in MR-TRUS registration. The proposed registration 
method takes into account the wide variations among patients and within each prostate gland – normal 



prostatic tissue, cysts, cancers and calcifications all have different elastic properties. This registration 
based on the inhomogeneous elasticity model could improve the prostate tissue deformation due to 
provide a physical regularization of the deformation map. 

 

 

Figure 1. Flow chart of integrating MR-based 3D NVB into TRUS. 

 

 

Figure 2. Flow chart of the MR-TRUS registration 
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NVB segmentation 

This registration method used one-modality image registration between TRUS and TRUS to provide 
prior tissue deformation guidance for two-modality image registration between MR and TRUS to 
improve the accuracy the MR-TRUS registration. The NVB are composed of numerous nerve fibers 
superimposed on a scaffold of veins, arteries, and variable amounts of adipose tissue surrounding almost 
the entire lateral and posterior surfaces of the prostate. The accurate prostate tissue deformation provides 
the basis for the accurate TRUS segmentation of NVB surrounding the prostate surface. After the MR-
TRUS deformable registration the MR-defined NVB can be transfer into TRUS image using the 
transformation obtained from this registration to achieve the 3D NVB segmentation in TRUS images.  

Results: In order to validate the proposed registration method, we conducted a clinical study with 7 
prostate cancer patients. All patients’ TRUS data were acquired using a Hitachi ultrasound machine and a 
7.5MHz bi-plane probe. Each 3D B-mode TRUS data sets consisted of 1024 × 768 × 75 voxels and the 
voxel size was 0.10 × 0.10 × 1.00 mm3. The ultrasound Doppler images were captured from the prostate 
base to apex at a 5-mm step. All MR images were acquired using a Philips 1.5T MR scanner and a pelvic 
phase-array coil. The 3D MRI data consisted of 320 × 320 × 92 voxels and the voxel size was 0.63 × 0.63 
× 1.00 mm3. All prostate glands were contoured in T2-weighted MR and TRUS images by an 
experienced physician. For each patient, three to six landmarks were indentified in post-registration MR 
and TRUS images to facilitate quantitative comparison. In addition, we used patients’ ultrasound Doppler 
images to further validate our MR-based NVB segmentation.  

We successfully performed the segmentation method for all enrolled 7 prostate-cancer patients. Figure 3 
shows the NVB in MR image for a 65-year old prostate-cancer patient. Figure 4 indicates the integration 
of MR-based NVB into TRUS. Figure 5 demonstrates the ultrasound Doppler validation of our 
segmentation method. The red and blue regions are blood signal in Doppler images and the region within 
the yellow contour is the MR-defined NVB. The segmented NVB matches with Doppler signal very well. 
In addition, Though MR-TRUS registration, 3D visualization and blood flow information of the NVB are 
also obtained. The mean displacement of the landmarks between the post-registration MR and TRUS 
images was 1.56±0.37 mm, which demonstrated the precision of the registration based on the 
biomechanical model. Figure 6 shows the left and right NVB volume overlap between the segmented 
NVB and Ultrasound Doppler defined NVB for each patient. Overall the NVB volume Dice Overlap 
coefficient was 92.1±3.2%, which demonstrated the accuracy of the proposed registration-based 
segmentation method.  

New or breakthrough work to be presented: MRI is the best imaging modality for 3D visualization of 
the NVB, while Doppler ultrasound can provide blood flow information of the NVB. We proposed a 
novel registration-based NVB segmentation method to combine its anatomical structures in MR images 
and its functional information in ultrasound Doppler imaging. Our method could not only provide the 3D 
visualization of the NVB, also provide its functional and dynamic property (blood flow). It will be very 
useful to spare the NVB in prostate RT, monitor NBV response to RT, and potentially improve post-RT 
potency outcomes.   

Figure 3. The NVB in MR image in axial (a), coronal (b) and sagittal (c) planes. 

(a) (b) (c)



Figure 4. Integration of MR-based NVB into TRUS. (a) is MR;  (c) is TRUS; (b) is MR-TRUS fusion images, 
where the NVB volume is integrated. The close match between the landmarks (black arrows) in fusion image 
demonstrated the accuracy of our method.  

Figure 5. Ultrasound Doppler validation of our technology. 3D NVB in TRUS after MR-TRUS registration (a) and 
ultrasound Doppler image (b). Though MR-US registration, 3D visualization and blood flow information of the 
NVB are obtained. 

Figure 6. The left and right NVB volume overlap of each patient. 

Conclusion: We have developed a novel approach to improve 3D NVB segmentation through MR-
TRUS deformable registration for prostate RT, demonstrated its clinical feasibility, and validated its 
accuracy with ultrasound Doppler data. This technique could be a useful tool as we try to spare the NVB 
in prostate RT, monitor NBV response to RT, and potentially improve post-RT potency outcomes.   
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Abstract: We propose a 3D segmentation method for transrectal ultrasound (TRUS) images based on 
patch-based anatomical feature. Patient-specific anatomical features are extracted from aligned training 
images and adopted as signatures for each voxel. The more robust and informative features are identified 
by the feature selection process to train the kernel support vector machine (KSVM). The well-trained 
KSVM was used to localize the prostate of the new patient. Our segmentation technique was validated 
with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual 
segmentation. The mean volume Dice Overlap Coefficient was 89.7±2.3%. We have developed a new 
prostate segmentation approach based on the optimal feature learning framework, demonstrated its 
clinical feasibility, and validated its accuracy with manual segmentation (gold standard). 
 
 
Purpose: Prostate cancer is the second leading cause of cancer death for U.S. male populations [1]. 
Transrectal ultrasound (TRUS) is the standard imaging modality for the image-guided prostate-cancer 
interventions (e.g., biopsy and brachytherapy) due to its versatility and real-time capability. Accurate 
segmentation of the prostate plays a key role in biopsy needle placement [2], treatment planning [3], and 
motion monitoring [4]. As ultrasound images have a relatively low signal-to-noise ratio (SNR), automatic 
segmentation of the prostate is difficult [5-8].  However, manual segmentation during biopsy or radiation 
therapy can be time consuming. We are developing an automated method to address this technical 
challenge.  

Method: Our segmentation method consists of two major stages: the training stage and the segmentation 
stage. During the training stage, patch-based anatomical features are extracted from the registered training 
images with patient-specific information, because these training images have been mapped to the new 
patient’ images, and the more informative anatomical features are selected to train the kernel support 
vector machine (KSVM). During the segmentation stage, the selected anatomical features are extracted 
from newly acquired image as the input of the well-trained KSVM and the output of this trained KSVM is 
the segmented prostate of this patient. Fig.1 shows a schematic flow chart of our method. The steps are 
briefly described below. 

(1)Preprocessing and Registration  

First of all, some preprocessing is performed for the training TRUS images in dataset, which includes 
reducing speckle noise, bias correction (AGC correction) and grayscale normalization. The same 
processing is also performed for the new patient’s image that will be segmented. Such preprocessing steps 
are to improve the accuracy of the following registrations. During the alignment processing of training set, 
we first select one TRUS image as the template, detect probe center, position and radius, and align other 
TRUS images to the template image. And we use the corresponding transformation obtained from training 
image alignment to align the segmented prostates (binary mask) to the template prostate. Since the 
segmented prostate of each training image is available, in order to further optimize the alignment of 
training set we again align each training image to the template image by registering the binary 
segmentation prostates to the template prostate. A Gaussian filtering process is performed on the 
segmented binary prostates before conducting registration in order to enforce the proper optimization of 
the cost function during registration. The segmented prostates are binary mask volumes with relatively 
simple shapes; therefore the optimal deformable transformations to warp the binary prostates to the 
template prostate can be robustly estimated. When a newly acquired TRUS image comes, all aligned 
training TRUS images existed in training set are registered to this new image. The deformable registration 
methods [6, 8-10] are used to obtain the spatial deformation field between the new TRUS image and 
training TRUS images. The same transformations are applied to the segmented prostates in training set. 



 

(2)Patch-based feature extraction  

Patch-based representation has been widely used as voxel anatomical signature in computer vision and 
medical image analysis. The principle of the conventional patch-based representation is to first define a 
small image patch centered at each voxel and then use the voxel intensities of image patch as anatomical 
signature of each voxel. However, due to the low contrast and SNR, and also anatomical complexity of 
prostate ultrasound images, patch-based representation using voxel intensities alone may not be able to 
effectively distinguish prostate and non-prostate voxels. So we introduce to use patch-based anatomical 
features as signature for each voxel to characterize the image appearance. Three types of images features, 
namely, the Haar wavelet feature, the histogram of gradient (HOG) feature, and the local binary pattern 
(LBP) feature, are extracted from a small image patch (50×50) centered at each voxel of each aligned 
training image. Haar and HOG features can provide complementary anatomical information to each other, 
and LBP can capture texture information from the input image. The fourteen multiresolution Haar feature 
is used in this study. For the HOG feature, it is the 3×3 gradient orientation histogram, resulting in a 9D 
feature vector. The LBP feature is extracted in three resolution levels and it has a dimension 30. Therefore, 
for each voxel, it is represented by a 53 dimensional feature signature. Although the features are extracted 
from each 2D slice for each voxel normally due to the larger voxel size (1mm) along the sagittal direction 
than the size (0.12×012 mm2) at transverse direction, the proposed framework is operated on 3D prostate 
TRUS images. 

 
Figure 1. Schematic flow chart of the proposed algorithm for 3D segmentation of the prostate. 

(3) Feature selection  

Based on the above features, we can obtain patch-based representation of each voxel. It should be noted 
that the patch-based anatomical signature may contain noisy and redundant features which will finally 
affect the segmentation accuracy. Therefore, feature selection should be performed to identify the more 
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informative and salient features in the anatomical signature of each voxel. Here feature selection can also 
be viewed as a binary variable regression problem with respect to each dimension of the original feature. 
Therefore, the logistic function is used as the regression function. The logistic function [11] represents a 
conditional probability model defined by 

1( , , ( ))
1 exp( ( ( ) ))T

P y b f x
y f x b





  

  (1) 

where ( )f x denotes the original feature signature of voxel x , and y is a binary variable with 1y  

denoting that is belonging to the prostate region and 1y   otherwise.  and b are parameters of the 
model. 
Moreover, the aim of feature selection is to select a small subset of more informative feature as 
anatomical signature, which can be well accomplished by enforcing the sparsity constraint during the 
logistic regression process. Therefore, the feature selection problem can be finally formulated as a logistic 
sparse LASSO problem [12]. It is defined as, 
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      (2) 

where ( )cf x denotes the original feature signature of voxel cx . Label 1cL   denoting that cx is belonging 
to the prostate region and 1cL    otherwise.  is the sparse coefficient vector, 

1
is the 1L  norm, b is the 

intercept scalar, and  is the regularization parameter. The first term of (2) is obtained by inputting the 
label values of drawn samples and their original feature signatures to the logistic function in (1), and then 
take the logarithm for maximum likelihood estimation. The second term of (2) is the 1L  norm which aims 
to enforce the sparsity constraint for LASSO. Through minimizing the logistic sparse LASSO energy 
function (2) the features with superior discriminant power are selected. Based on the selected features, we 
can directly measure their discriminant power to separate prostate and non-prostate voxels quantitatively, 
based on the Fisher’s score. The higher Fisher’s score indicates the higher discriminative power of the 
representative feature. 

(3) Support vector machine (SVM) training and segmentation 

SVM is a popular supervised machine learning model with associated statistical learning algorithms that 
analyze data and recognize patterns for classification and regression analysis. The idea behind SVMs is to 
map the original data points from the input space to a high-dimensional (hyperplane) feature space such 
that the classification problem becomes simpler in the hyperplane space. The training phase of SVMs 
looks for a linear optimal separating hyperplane as a maximum margin classifier with respect to the 
training data [9]. Since the training data are not linearly separable, kernel-based SVM methods are 
employed to classify these features. We use the selected, more informative and salient features as well as 
the transformed prostate volumes (binary) to train the RBF kernel-based SVM. In order to segment the 
prostate for a newly acquired TRUS images, we extract the corresponding, more informative and salient 
features for each voxel of the new TRUS. These anatomical features of the new TRUS are the input of 
trained kernel-based SVM, and the well-trained SVM adaptively labels the prostate tissue based on its 
anatomical signature. The output of trained SVM is a binary volume consisting of many “0” (non-prostate 
tissues) and “1” (prostate tissue) points. After doing some morphological operations we can obtain the 3D 
segmented prostate. 

Results: In order to test our segmentation method, we applied the segmentation method to 10 patients’ 
TRUS images. All patients’ TRUS data were acquired using a Hitachi ultrasound machine and a 7.5MHz 
bi-plane probe. Each 3D TRUS image consisted of 1024×768×75 voxels and the voxel size was 
0.12×0.12×1.00 mm3. All prostate glands were contoured in TRUS images by an experienced physician. 
We used leave-one-out cross-validation method to evaluate the proposed segmentation algorithm. In other 
words, we used the 9 training images and segmented prostates as the training set and applied the proposed 
method to process the remaining subject. Our segmentations were compared with the manual results. In 
order to get a quantitative evaluation of this comparison, we calculated the Dice volume overlap between 
our and manual segmentations. We successfully performed the segmentation method for all enrolled 
patients. As demonstrated in Figure 2, the proposed segmentation method works well for 3D TRUS 



images of the prostate and achieved similar results as compared to manual segmentation. Figure 3 shows 
Dice volume overlap for each patient. Overall the prostate volume Dice Overlap coefficient was 
89.7±2.3%, which demonstrated the accuracy of the proposed segmentation method. 

Figure 2. Comparison between the proposed method and manual segmentation. Images from left to right are in three 
orientations of the same TRUS image. The line in yellow is the manual segmentation result. The dashed line in red is 
the segmentation result of the proposed method.  

New or breakthrough work to be presented: 
Instead of using voxel intensity information 
alone, patch-based representation in the 
discriminative feature space with logistic sparse 
LASSO is used as anatomical signature to deal 
with low contrast and SNR problem in prostate 
ultrasound images. Based on the patch-based 
anatomical features training, a well-trained 
KSVM is designed to segment the prostate of a 
newly acquired TRUS.  

Conclusion: In this study we report a novel 3D 
TRUS prostate segmentation method based on 
patch-based anatomical feature. Patient-specific 
anatomical features are extracted from aligned 
input images and adopted as signatures for each 
voxel. The more robust and informative 
features are identified by the feature selection process to train KSVM. The well-trained KSVM is used to 
help localize the prostate of the new patient. We have demonstrated its clinical feasibility, and validated 
its accuracy with manual segmentations. This segmentation technique could be a useful tool for image-
guided interventions in prostate-cancer diagnosis and treatment.   

Acknowledgements: This research is supported in part by DOD PCRP Award W81XWH-13-1-0269, and 
National Cancer Institute (NCI) Grant CA114313. 

Reference 

[1] [Prostate Cancer Foundation, http://www.prostatecancerfoundation.org], (2008). 
[2] P. Yan, S. Xu, B. Turkbey et al., “Discrete Deformable Model Guided by Partial Active Shape Model for TRUS Image Segmentation,” 

Biomedical Engineering, IEEE Transactions on, 99, 1-9 (2010). 
[3] K. K. Hodge, J. E. McNeal, M. K. Terris et al., “Random systematic versus directed ultrasound guided transrectal core biopsies of the 

prostate,” J.Urol., 142, 71-74 (1989). 
[4] D. Shen, Z. Lao, J. Zeng et al., “Optimized prostate biopsy via a statistical atlas of cancer spatial distribution,” Med.Image Anal., 8(2), 

139-150 (2004). 
[5] F. Yang, J. Suri, and A. Fenster, “Segmentation of prostate from 3-D ultrasound volumes using shape and intensity priors in level set 

framework,” Conf.Proc.IEEE Eng Med Biol.Soc.2006;, 1, 2341-2344 (2006). 
[6] X. Yang, H. Akbari, L. Halig et al., “3D Non-rigid Registration Using Surface and Local Salient Features for Transrectal Ultrasound 

Image-guided Prostate Biopsy,” Proc. SPIE 7964, 79642V, (2011). 
[7] P. Yan, S. Xu, B. Turkbey et al., “Adaptively learning local shape statistics for prostate segmentation in ultrasound,” IEEE Trans 

Biomed Eng, 58(3), 633-41 (2011). 
[8] X. Yang, D. Schuster, V. Master et al., “Automatic 3D segmentation of ultrasound images using atlas registration and statistical 

texture prior,” Proc. SPIE 7964, 796432, (2011). 
[9] X. Yang, and B. Fei, “3D prostate segmentation of ultrasound images combining longitudinal image registration and machine learning ” 

Proc. SPIE 8316, 83162O (2012). 
[10] D. Rueckert, L. I. Sonoda, C. Hayes et al., “Nonrigid registration using free-form deformations: application to breast MR images,” 

Medical Imaging, IEEE Transactions on, 18(8), 712-721 (1999). 

(a) (b) (c)

Figure 3. Dice volume overlaps between our and manual
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Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving 
radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, 
little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a 
previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used 
to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics 
of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) 
of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 
3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. 
A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 
MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, 
were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the 
RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from 
the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced 
vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for 
GYN malignancies. 

Keywords: Ultrasound, Nakagami imaging, vaginal fibrosis, radiation toxicity 

1. INTRODUCTION

Radiation-induced vaginal fibrosis is a debilitating side-effect, affecting 80% of women post pelvic or 
vaginal radiotherapy. Despite the significant incidence and severity, little research has been conducted to 
identify the pathophysiologic changes of vaginal toxicity. This paucity of data is largely due to the lack of 
an easy, reliable tool able to assess radiation-induced vaginal changes. This study’s purpose is to develop 
ultrasound Nakagami imaging technique to quantitatively evaluate vaginal fibrosis in a 3D manner. 

The Nakagami imaging method utilizes the radio-frequency (RF) signals obtained from a clinical 
ultrasound scanner. These RF signals are dependent on the physical properties (e.g. shape, size, and 
density) of the scatterers inside the biological tissue [1]. The Nakagami distribution, initially proposed to 
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describe the statistics of the radar echoes, is applied to analyze the statistics of the ultrasonic 
backscattered signals [2, 3]. The Nakagami parameters have been demonstrated to be useful for 
distinguishing various scatterer concentrations and arrangements in tissues [4-6]. The Nakagami statistical 
model has received considerable attention because the Nakagami distribution is highly consistent with the 
statistics of the backscattered ultrasound data, with the corresponding Nakagami parameter varying with 
the backscattering-envelope statistics [7, 8]. 

2. METHODS

The theoretical framework for Nakagami imaging relates statistical parameters to properties of the 
examined tissue. The analysis applies to the backscattered envelope signals of the “raw” radio-frequency 
echo signals, not to ultrasound B-mode image data. The formulation treats the backscattered ultrasound 
envelope signals as random signals. Our analysis characterizes tissue structures in terms of a stochastic 
probability density function (PDF) under the Nakagami statistical model [9]. The PDF of the ultrasonic 
backscattered envelope   under the Nakagami statistical model is define as, 

2 1 22( ) exp( ) ( )
( )

u
u

u

u u
f x x x W x

u  

  


          (1) 

where     is the gamma function and      is the weight function. The parameter   is the scaling 
parameter, whereas   is the Nakagami parameter. Let      denote the statistical mean, then scaling 
parameter   and Nakagami parameter   associated with the Nakagami distribution can be obtained from 
the following equations: 
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where      is the expected value operator and T is a threshold. The likelihood ratio was obtained by 
assuming that every envelope value within the region of interest (ROI) was independently and identically 
distributed. Then, the parameters   and   were found by maximizing the likelihood ratio using an ascent 
algorithm [10].  

The Nakagami parameter   is a shape parameter for the PDF. When   equals 1, the Nakagami 
distribution reduces to a Rayleigh distribution. When    is between 0 and 1, the envelope distribution is 
said to be pre-Rayleigh [11]. When     , the distribution conforms to post-Rayleigh, as shown in Fig.1 
[12]. This property makes the Nakagami distribution a good general model for ultrasonic backscattering. 
When the ROI contains randomly located scatterers with varying scattering cross sections, the envelope 
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statistics are likely to be pre-Rayleigh and   is typically between 0.5 and 1[13]. Similarly, when some 
spatial periodicity exists among scatterers within the resolution cell, then the envelope statistics are post-
Rayleigh, and   becomes larger than unity [12]. Typically,   is used as a means to quantify the effective 
number of scatterers in the resolution cell. This interpretation can be obtained by noting that the random 
variable       follows a gamma distribution and interpreting the physical relationships between    and 
the effective number obtained from the gamma distribution [4]. 

Note that the window size determines the resolution of the Nakagami parameter image. The principle 
notion in image formation is the resolution which describes the ability of a system to resolve the smallest 
details in an object. There is a trade-off between resolution and statistical power. As the window size 
decreases, the resolution of the Nakagami   image is improved. However, a small window has fewer 
envelope data points, leading to an unstable estimation of the parameter. In the evaluation of radiation 
toxicity, the area of treatment is large, and the irradiated tissues typically range from 5 cm to 15 cm. 
Therefore, resolution is not a problem in the evaluation of post-RT tissues. The principle challenge in 
imaging radiation toxicity is to detect early changes that might be subtle. Hence, we selected a relatively 
big window size of 39 sample points (beam direction) and 15 scan lines (lateral direction) to improve the 
statistical power. At the probe surface, the actual window size is 1.50 mm (beam) by 1.26 mm (lateral). 
Because of the fan shape of the beam, the lateral width increases with depth.  

Fig. 1. Nakagami distributions for different Nakagami parameters. 

Nakagami   images and Nakagami PDF images are generated using a 3D sliding box. The Nakagami 
parameters ω and   are commonly used parameters, which are computed from Eqs. (2) and (3). From Eq. 
(1), we subsequently calculated a PDF value for the central point of the sliding box from the 
corresponding envelope intensity value. The sliding box is moved through the entire RF envelope image 
point by point, line by line and slice by slice to generate the 3D Nakagami parameter images. This sliding 
box method could reduce the sub-resolvable effect at the locations of the strong reflectors (e.g. tissue 
interface or point target) in a scattering medium. In other words, when the sliding box moves onto the 
strong reflector, the box not only covers the signals from the strong reflector but also contains those from 
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the tissue background. Because there is a large difference in the echo intensity between the reflector and 
the background, the backscattered envelopes acquired by the box would tend to be extremely pre-
Rayleigh distributed, rendering the Nakagami   parameter very small. From the Nakagami PDF and 
Nakagami   images, Nakagami PDF and   parameters were calculated based on the physicians’ contours 
of the vaginal wall.  

3. RESULTS

In this study, 10 participants (5 post-radiation patients and 5 normal controls) were enrolled. The 5 
patients all have received radiotherapy for their GYN malignancies (follow-up time: 20.5±7.1 months). 
Each subject underwent one transvaginal ultrasound study (6 MHz). Three-dimensional transverse images 
of the anterior vaginal wall were acquired in a 1 mm step size from the apex (vaginal cuff) to the introitus 
(vagina opening).  

Fig. 2. Tranvaginal ultrasound B-mode and corresponding Nakagami parameter images at the proximal, mid and distal locations 
of the vagina.  

Here, the 3D Nakagami imaging method is illustrated through a case of a 54-year- old patient who 
had received 54 Gy external beam radiation for the her early-stage endometrial cancer. At her 2-year 
follow-up visit, a clinical examination showed a Grade 1 vaginal fibrosis. Transvaginal ultrasound B-
mode images showed increased vaginal wall thickness at the proximal, mid and distal locations of the 
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vagina (Figure 2, top row). The corresponding 2D Nakagami PDF images are shown in the 2nd row of 
Figure 2, and 2D Nakagami shape images are shown in the 3rd row of Figure 2. Figure 3 show the 3D 
Nakagami shape and PDF image of the anterior vaginal wall.  

Figure 4 shows the Nakagami parameters for the normal and post-radiotherapy groups. The 
significant separations between the two groups indicated that the Nakagami method was capable of 
distinguishing the control from the post-RT vaginal walls. The increased Nakagami shape and PDF 
parameters may be related to the increases in the concentration of scatterers and periodic structures, which 
may be resulted from the fibrotic development and increased collagen content in the vaginal wall. 

Fig. 3. 3D Nakagami shape and PDF image of a post-RT patient. 

Fig. 4. Comparison of the control and post-RT groups. (a) Nakagami shape parameter (b) Nakagami PDF. 
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4. DISCUSSION AND CONCLUSION

This pilot study demonstrated that 3D Nakagami imaging is a promising imaging tool for the quantitative 
evaluation of radiation-induced vaginal fibrosis. In this study, we proposed a new 3D Nakagami 
parameter imaging, to assess post-RT vaginal toxicity in vivo. Conventional B-mode imaging, generated 
from the intensity of the backscattered echoes, provides the anatomy and intensity of the vaginal wall. In 
contrast, the Nakagami parameter image, constructed using the raw RF signals, reflects the arrangements 
and distributions of the vaginal tissue (microstructures). The separations on the scatter grams indicated 
that the 3D Nakagami imaging method was capable of distinguishing the control from the post-RT 
vaginal walls. 

Traditionally, vaginal toxicity is assessed through the physicians’ visual and tactile examination. Such 
assessment is subjective and, hence, potentially inconsistent. Quantitative ultrasound is an attractive 
alternative that could provide clinicians with a simple visualization and quantitative assessment of the 
vaginal injury. Computed from the statistics of the enveloped backscattered signals, the Nakagami 
parameters can be used to characterize various scatterer concentrations and arrangements of the biological 
tissues. 

So far, imaging has played a negligible role in the evaluation of vaginal toxicity, and this is the first 
ultrasound study on post-RT vaginal fibrosis using 3D Nakagami imaging. We should note that the B-
mode image method and the Nakagami-parameter method are independent and complementary [14]. The 
advantage of utilizing ultrasound B-mode image is its wide availability in the clinic [15, 16]. The 
Nakagami parameter image is constructed using the raw RF signals, and the same diagnostic ultrasound 
system is used in the current investigation. The Nakagami parameter estimated from the ultrasonic 
backscattered signals depend on the statistical distribution of echo waveform and not affected by the echo 
amplitude and, thus, Nakagami imaging is less operator-dependent.  

In this study, we demonstrated that 3D Nakagami imaging has the potential to serve as a functional 
imaging tool to enhance the study of vaginal fibrosis. This imaging tool could provide greater insight into 
structural changes that lead to vaginal toxicity, and potentially lay the groundwork for outcome metrics of 
interventions to prevent and treat vaginal toxicity.  
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Ultrasound 2D Strain Estimator Based on Image 
Registration for Ultrasound Elastography  
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In this paper, we present a new approach to calculate 2D strain through the registration of the pre- and 
post-compression (deformation) B-mode image sequences based on an intensity-based non-rigid 
registration algorithm (INRA). Compared with the most commonly used cross-correlation (CC) method, 
our approach is not constrained to any particular set of directions, and can overcome displacement 
estimation errors introduced by incoherent motion and variations in the signal under high compression. 
This INRA method was tested using phantom and in vivo data. The robustness of our approach was 
demonstrated in the axial direction as well as the lateral direction where the standard CC method 
frequently fails. In addition, our approach copes well under large compression (over 6%). In the phantom 
study, we computed the strain image under various compressions and calculated the signal-to-noise 
(SNR) and contrast-to-noise (CNS) ratios.  The SNR and CNS values of the INRA method were much 
higher than those calculated from the CC-based method. Furthermore, the clinical feasibility of our 
approach was demonstrated with the in vivo data from patients with arm lymphedema.  

Key words: Ultrasound, elastography, strains imaging, image registration. 

1. INTRODUCTION

Ultrasound elasticity imaging describes the compressibility of biological tissues [1]. Changes in tissue 
stiffness often correlate with pathological phenomena, and can be indicators of diseases, such as cancer or 
cardiovascular illness [2]. In elasticity (strain) imaging, the displacement or deformation of tissue is 
estimated using pre- and post-compression image data. The resulting strain measurement could provide 
insight into the elastic properties of tissues [3].  

Most elastography techniques estimate tissue displacements based on an amplitude correlation [4, 5] 
or a phase correlation of the radio-frequency (RF) echoes [6, 7]. Such cross-correlation (CC) provides an 
accurate and effective estimator of the similarities between the echo fields, and is capable of tracking 
small displacements even when very low strains (less than 2%) are involved. However, elastography is 
often degraded by decorrelation noise, especially when incoherent motion [4, 7-9], and non-rigid tissue 
deformation [10, 11] between the pre- and post-compression (deformation) are present. In fact, incoherent 
motion and variations in the signal from scatterers at high compression lead to displacement estimation 
errors [12] and ambiguities in the determination of the motion vectors [13].  
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Attempts have been made to adapt the correlation algorithm to provide sub-sample accuracy and 
multi-level estimation stability [14-18]. These approaches proved to be valuable, however, the motion is 
estimated in sub-windows where it is supposed to be linear [19] or constant [20], and the continuity of the 
motion field in the whole domain. When the continuity assumption is violated, a tracking algorithm might 
not only fail to find the correct displacement at any particular point, but also propagate this incorrect 
estimate into other parts of the image, producing so-called drop-outs. To avoid this problem, incorrect 
displacement estimates can be detected and replaced by values interpolated from nearby points before 
they get a chance to propagate [18, 21]. While most previously mentioned methods use tissue motion 
continuity to confine the search range for the neighboring windows, the displacement of each window is 
calculated independently, and hence is sensitive to signal decorrelation.  

In this paper, we developed a new approach to measure 2D strain at high compression by registration 
of pre-stress and post-stress B-mode image sequences, which combines the advantages of intensity-based 
similarity measures with a non-rigid transformation model.  

2. METHODS

To be able to calculate the strain of the biological tissue, the displacement (deformation) of the tissue 
from pre-stress to post-stress has to be determined. This is equivalent to finding the corresponding point 
before and after compression for each point of the tissue. Elasticity image reconstructions are considered 
as a non-rigid image registration problem. We use a hierarchical transformation model which captures the 
global and local transformation for the displacement estimation of tissue under compression. The global 
displacement of the tissue is modeled by an affine transformation, while the local transformation is 
described by a non-rigid deformation based on B-splines [22]. Since the intensity and contrast between 
the pre-compression and post-compression may change, we will use voxel-based similarity measures 
based on normalized mutual information.  

2.1 Transform Model 

The overall displacement of the tissue is described using the global displacement model. Compared with a 
rigid transformation, which is parameterized by 6 degrees of freedom, describing the rotations and 
translations of the tissue, an affine transformation is a more general class of transformations, and it has six 
additional degrees of freedom, describing scaling and shearing. It is defined as:  

             
          

         

   
  

 
 
 
 (1) 

where the coefficients   parameterize the 6 degrees of freedom of the transformation. 

Because of the difference in tissue elasticity characteristics, the regional deformation in the tissue can 
vary significantly under loaded external pressure. Therefore, it is difficult to describe the regional 
deformation via parameterized transformations [23]. Instead, a multi-level B-splines deformation model 
[24-26] has been applied to displacement analysis in this paper. The resulting deformation controls the 
shape of the object and produces a smooth and continuous transformation. A hierarchical multi-resolution 
approach [22] has been applied, in which the resolution of the control mesh is increased, along with the 
image resolution, in a coarse to fine style. At each level of resolution the spacings between the control 
points in the    and   directions are denoted by    and   , respectively. By moving the control points 
independently of each other, the space between them is deformed non-rigidly. At any position       of 
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each level the deformation is computed from the positions of the surrounding     neighborhood of 
control points. The regional transformation     

  at level    of resolution is defined by each control 
mesh   ,  and the corresponding spline-based transformation, and their sum of the regional 
transformation      is defined as 

                                     
  

   
 
   

 
                                          (2) 

Here,   and   denote the index of the control point cell containing     , and   and   are the relative 
positions of   and  , respectively, inside that cell in the two dimensions,           ,          

 ,             , and              . The function    represents the     basis function of the 
B-spline  

      
      

 
        

           

 
,       

               

 
       

  

 
                    (3) 

Here the regional transformation is represented as a combination of B-spline deformation s at increasing 
resolutions of the control point mesh. The control point mesh at level   is refined by inserting new control 
points to create the control point mesh at level    , and the values of the new control points      can 
be calculated directly from those of    [27]. The control points    are parameters of the B-spline 
deformation, and the degree of non-rigid displacement that can be modeled depends essentially on the 
resolution of the mesh of control points  . The large lattice spacing   permits the representation of non-
rigid displacements of the whole image, whereas the fine lattice allows for modeling highly regional non-
rigid displacements. 

The goal of the displacement estimation in ultrasound elastography is to obtain a 2D map of the 
tissue’s mec ani cal properties, that is, to find the optimal transformation   which maps any point in the 
post-deformation image into its corresponding point in the pre-deformation reference image. Finally a 
combined transformation   consisting of a global and regional transformation has been applied 

                                                                                    (4) 

 
2.2 Smoothness Constraint 

To constrain the smoothness of the spline-based transformation, a penalty term is introduced, which is 
based on the bending energy of a thin plate of metal that is subjected to bending deformations [28]. It is 
composed of second-order derivatives of the deformation 

           
 

     
   

    
   

   

    
    

   

   
       

 

 

 

 
                                 (5) 

where   denotes the volume of the image domain. This regularization term penalizes only non-affine 
transformations. The second-order derivatives of the B-spline transformation are computed by 
substituting the appropriate derivatives for the corresponding polynomials. Mixed second-order 
derivatives with respect to the two different variables are computed by substituting two B-spline 
polynomials with their respective first-order derivatives. 
 
2.3 Similarity Measure 

Central to mutual information (MI) is the Shannon entropy [29],  , which relates to the average 
information supplied by a given set of parameters,  , whose probabilities are given by     . The 
expression for the Shannon entropy with respect to a discrete parameter probability is 

                                                                            (6) 
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In order to relate a post-deformation image to the pre-deformation reference image, a similarity criterion 
which measures the degree of alignment between both images, must be defined. Because the image 
intensity and contrast (the amplitude of RF signals) might change after a large compression, a direct 
comparison (i.e. cross correlation) of image intensities cannot be used as a similarity measure. By 
characterizing two images using the probability distribution function (PDF) based on the joint histogram 
and minimizing the joint entropy correlates with better image-to-image alignment. An alternative voxel-
based similarity measure is MI [30, 31], and it is based on the concept of information theory and 
expresses the amount of information that a pre-deformation image      contains about a post-deformation 
image      . The MI will be maximized when both images are aligned. MI relies on the overlap between 
the two images [32]; to avoid any dependency on the amount of image overlap, NMI as a measure of 
image alignment is proposed and it is written as 

                 
                

              
                                                  (7) 

where         and         denotes the marginal entropies of      and        and               denotes 
their joint entropy, which is calculated from the joint histogram of      and      . 
 
2.4 Optimization  

In order to find the optimal transformation, we minimize a cost function associated with the global and 
regional transformation parameters. In addition to the NMI similarity measure    , our registration 
method incorporates an additional penalty term         to constrain the deformation of the coordinate 
space. The cost function comprises two competing goals. A user-defined weighting factor          
controls the relative influence of      and        , combining both into the overall cost function        
as follows:  

                                                                                        (8) 

Here,   is the weighting parameter which defines the tradeoff between the alignment of the two images 
and the smoothness of the transformation. Finding the parameters of the nonrigid transformation that 
optimize the joint cost function requires an efficient and robust optimization algorithm. The optimization 
proceeds include two stages. During the first stage, the affine transformation parameters   are optimized. 
Since the smoothness term of the cost function is zero       for any affine transformation, this step is 
equivalent to maximizing the image similarity. During the second stage, the non-rigid transformation 
parameters   are optimized as a function in the cost function. In each stage the gradient of the cost 
function is computed, and a line search is performed for the optimum parameters along the gradient 
direction [22].This procedure is repeated until the cost function cannot be improved any further.  
 
 

3. EXPERIMENTS AND RESULTS 
 
In order to validate our non-rigid registration based elastography method, we conducted a phantom and in 
vivo ultrasound studies using a clinical scanner (SonixTouch, Ultrasonix, British Columbia, Canada). The 
elastography phantom (Model 059, CIRS) and in-vivo human hand were scanned using the L14-5/38 
linear probe (128 elements) at 10 MHz center frequency. The in-vivo arm data were acquired using the 
BPL9-5/55 probe (256 elements) at 6.5 MHz center frequency. For the CC-based method, 4 levels from 
coarse to fine were used. We used 0.01 for the cost function and 3×3 grid spaces for our registration-
based method. 
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This phantom includes several dense masses (lesions). The elasticity (stiffness) of the each dense 
mass is at least two times greater than the elasticity of the background, which has an elastic modulus of 20 
kPa ± 5kPa. For phantom results we calculate the signal-to-noise ratio (SNR) and contrast to noise ratio 
(CNR) to assess the performance of our method according to 

     
        

     
  

        
 

  
    

  ,         
       

     
 

 

 
 (9) 

where    and    are the spatial strain average of the target and background,   
 and   

  are the spatial 
strain variance of the target and background, and   and   are the spatial average and variance of a 
window in the strain image, respectively. 

Figures 1 shows the comparison of the elastography results of the INRA and CC-based methods 
along the axial direction of the elastography phantom. The breast lesion is clearly visualized on the strain 
and B-mode fusion image of the INRA method, yet is not clear on the fusion image of the CC-based 
method. Figure 2 shows the comparison of the elastography results of the INRA and CC-based method 
along the lateral direction of the elastography phantom. The breast lesion is still clear on the B-mode and 
strain fusion image of the INRA method, and is not visible on the fusion image of the CC-based method. 
Compared with the INRA method, the CC-based block match has more artifacts in the axial strain image 
and the breast lesion in phantom almost cannot be seen in lateral strain images. However, the INRA 
method can detect the lesion in both the axial and lateral strain images.  

Fig. 1. Phantom experiment results – axial direction. (a) B-mode image of the breast phantom with a lesion (white dotted line); 
CC-based elastography results (top row): (b) Displacement, (c) Strain, and (d) Strain and B-mode fused image;  INRA-based 
elastography results (bottom row): (e) Displacement, (f) Strain, and (g) Strain and B-mode fused image. 

(a)
1 cm

Forward Transf. in x direction

 
50 100 150 200 250

50

100

150

200

250

300 0

0.5

1

1.5

2

2.5

3

3.5

4Forward Transf. in x direction

 
50 100 150 200 250

50

100

150

200

250

300 0

0.5

1

1.5

2

2.5

3

3.5

4

(e)

ex

 
50 100 150 200 250

50

100

150

200

250

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035ex

50 100 150 200 250

50

100

150

200

250

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(f)

displacement y

5 10 15 20 25 30 35

5

10

15

20

25

30

35

1

2

3

4

5

6

7

8

9

displacement y

5 10 15 20 25 30 35

5

10

15

20

25

30

35

1

2

3

4

5

6

7

8

9

(b)

5 10 15 20 25 30 35

5

10

15

20

25

30

35

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20 25 30 35

5

10

15

20

25

30

35

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c)

(g)

(d)

1

2

3

Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red
margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts

Return to the Manage Active Submissions page at http://spie.org/app/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will
not be published without this approval. Please contact author_help@spie.org with any questions or concerns.

9040 - 43 V. 4 (p.5 of 10) / Color: No / Format: Letter / Date: 2/25/2014 5:23:50 PM

SPIE USE: ____ DB Check, ____ Prod Check, Notes:



 

 
Fig. 2. Phantom experiment results – lateral direction. (a) B-mode image of the breast phantom with a lesion; CC-based 
elastography results (top row): (b) Displacement, (c) Strain, and (d) Strain and B-mode fused image; INRA-based 
elastography results (bottom row): (e) Displacement, (f) Strain, and (g) Strain and B-mode fused image. 

 

 

In order to quantitatively compare the INRA method with the traditional CC-based method, we used 
Eq. (9) to calculate the CNR and SNR in the axial and lateral strain images. We captured 90 frames of B-
mode images and RF data while the pressure was evenly loaded by the probe. We used the first frame as 
the reference frame, and selected every 10th frame (10th, 20th 30th, 40th, and etc.) as the floating frames to 
compare the CNR and SNR under various pressure deformations. The region of interest (ROI) 1 shown in 
Fig. 2 was used as the target. ROIs 2 and 3 were used as the background. ROIs 1 and 2 were used to 
calculate the CNR in the axial strain images, and ROIs 1 and 3 were used to calculate the CNR in the 
lateral strain images. Figures 3 and 4 illustrate the comparison of CNR and SNR between the two 
methods in the axial and lateral strains at different pressures (frames).  

For the both methods, the CNR and SNR in the axial strain were higher than the lateral strain. The 
CNR and SNR at corresponding directions of our INRA method were significantly higher than the CC-
based method. The CNRs for both methods at two directional strains finally decreased along the pressure 
(deformation) increase, while the SNRs increased along the pressure increase. The INRA method was 
better than the CC-based method in the CNR and SNR. In particular, the proposed INRA method can 
work well under high pressure and large deformation.  

In the in-vivo study, the CC-based method failed due to the large pressure and motion (over 6% 
strain). Figure 5 shows the INRA-based results from the in vivo palm data and Fig. 6 shows the results 
from in vivo arm data. Our method detected the soft tissue (white arrows) as shown red regions in Fig. 
4(e) and 5(e). From these two experiments we proved when we gave a large pressure to a probe, the 
intensity in the B-mode or the amplitude in RF will have a big deference. But we apply the NMI to 
calculate the similarity, so the intensity or amplitude changes will not affect our method and make our 
method robust. 

(a)
1 cm

Backward Transf. in y direction

 

 

50 100 150 200 250

50

100

150

200

250

300

-0.5

0

0.5

1

1.5
Backward Transf. in y direction

 

 

50 100 150 200 250

50

100

150

200

250

300

-0.5

0

0.5

1

1.5

(e)

ey

 

 

50 100 150 200 250

50

100

150

200

250

300
0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

ey

 

 

50 100 150 200 250

50

100

150

200

250

300
0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

(f)

displacement x

 

 

5 10 15 20 25 30 35

5

10

15

20

25

30

35

-1

-0.5

0

0.5

1

1.5

displacement x

 

 

5 10 15 20 25 30 35

5

10

15

20

25

30

35

-1

-0.5

0

0.5

1

1.5

(b)

ex

 

 

5 10 15 20 25 30 35

5

10

15

20

25

30

35

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 

 

5 10 15 20 25 30 35

5

10

15

20

25

30

35

-6

-5

-4

-3

-2

-1

0

1

2

3

4

(c)

(g)

(d)

Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red
margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts

Return to the Manage Active Submissions page at http://spie.org/app/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will
not be published without this approval. Please contact author_help@spie.org with any questions or concerns.

9040 - 43 V. 4 (p.6 of 10) / Color: No / Format: Letter / Date: 2/25/2014 5:23:50 PM

SPIE USE: ____ DB Check, ____ Prod Check, Notes:



Fig. 3. Comparison of the axial and lateral CNR. 

Fig. 4. Comparison of the axial and lateral SNR. 
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Fig. 5. In vivo results of the palm. (a) Pre-compression B-mode image of the palm, (b) B-mode intensity difference between pre- 
and post-compression, (c) Axial displacement, (d) Lateral displacement, (e) Axial strain image from the INRA method, (f) Lateral 
strain image from the INRA method, (g) Axial fusion image of the B-mode and strain images,  and (h) Lateral fusion image of the 
B-mode and strain images.    

  

 

Fig. 6. In vivo results of the arm. (a) Pre-compression B-mode image of the arm, (b) B-mode intensity difference between pre- 
and post-compression, (c) Axial displacement, (d) Lateral displacement, (e) Axial strain image from INRA method, (f) Lateral 
strain image from INRA method, (g) Axial fusion image of the B-mode and strain images,  and (h) Lateral fusion image of the B-
mode and strain images.    

 

 

4. CONCLUSIONS 
 

We have described a novel 2D strain estimation technology using intensity-based non-rigid registration 
for ultrasonic elasticity imaging. This method is an alternative approach towards 2D or 3D displacement 
estimation, which combines the advantages of voxel-based similarity measures with a non-rigid 
transformation model of tissue. The INRA-based strain estimation is not constrained to any particular set 
of directions, is insensitive to nonlinear and incoherent motion as well as large signal variations under 
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high pressure (big compression). The preliminary investigation suggests the robustness of this INRA 
method in phantom and in vivo data sets; this method could become useful in many clinical applications, 
such as arm lymphedema.  
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